
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

7-1 

 7.1. IDENTIFY:   gravU mgy=  so grav 2 1( )U mg y yΔ = −  
SET UP:   + y  is upward. 

EXECUTE:   (a) 2 5(75 kg)(9 80 m/s )(2400 m 1500 m) 6 6 10  JΔ = . − = + . ×U  

(b) 2 5(75 kg)(9 80 m/s )(1350 m 2400 m) 7 7 10  JUΔ = . − = − . ×  
EVALUATE:   gravU  increases when the altitude of the object increases. 

 7.2. IDENTIFY:   The change in height of a jumper causes a change in their potential energy. 
SET UP:   Use grav f i( ).U mg y yΔ = −  

EXECUTE:   2
grav (72 kg)(9 80 m/s )(0 60 m) 420 J.Δ = . . =U  

EVALUATE:   This gravitational potential energy comes from elastic potential energy stored in the jumper’s 
tensed muscles. 

 7.3. IDENTIFY:   Use the free-body diagram for the bag and Newton's first law to find the force the worker 
applies. Since the bag starts and ends at rest, 2 1 0K K− =  and tot 0.W =  

SET UP:   A sketch showing the initial and final positions of the bag is given in Figure 7.3a. 2 0 msin
3 5 m

φ .=
.

 

and 34 85 .φ = . °  The free-body diagram is given in Figure 7.3b. F  is the horizontal force applied by the 
worker. In the calculation of gravU  take y+  upward and 0y =  at the initial position of the bag. 

EXECUTE:   (a) 0Σ =yF  gives cosT mgφ =  and 0Σ =xF  gives sin .F T φ=  Combining these equations to 

eliminate T gives 2tan (120 kg)(9 80 m/s ) tan34 85 820 N.F mg φ= = . . ° =  
(b) (i) The tension in the rope is radial and the displacement is tangential so there is no component of T in 
the direction of the displacement during the motion and the tension in the rope does no work. 
(ii) tot 0W =  so 2

worker grav grav,2 grav,1 2 1( ) (120 kg)(9 80 m/s )(0 6277 m) 740 J.W W U U mg y y= − = − = − = . . =  
EVALUATE:   The force applied by the worker varies during the motion of the bag and it would be difficult 
to calculate workerW  directly. 

 

     
Figure 7.3 
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 7.4. IDENTIFY:   The energy from the food goes into the increased gravitational potential energy of the hiker. 
We must convert food calories to joules. 
SET UP:   The change in gravitational potential energy is grav f i( ),U mg y yΔ = −  while the increase in 
kinetic energy is negligible. Set the food energy, expressed in joules, equal to the mechanical energy 
developed. 
EXECUTE:   (a) The food energy equals f i( ),mg y y−  so 

f i 2
(140 food calories)(4186 J/1 food calorie) 920 m.

(65 kg)(9 80 m/s )
y y− = =

.
 

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m.yΔ = . =  
EVALUATE:   Since only 20% of the food calories go into mechanical energy, the hiker needs much less of 
climb to turn off the calories in the bar. 

 7.5. IDENTIFY and SET UP:   Use energy methods. Points 1 and 2 are shown in Figure 7.5. 
(a) 1 1 other 2 2.K U W K U+ + = +  Solve for 2K  and then use 21

2 22K mv=  to obtain 2.v  
 

 other 0W =  (The only force on the ball while 
 it is in the air is gravity.) 

21
1 12 ;K mv=  21

2 22K mv=  

1 1,U mgy=  1 22.0 my =  

2 2 0,U mgy= =  since 2 0y =  
for our choice of coordinates. 

Figure 7.5   
 

EXECUTE:   2 21 1
1 1 22 2mv mgy mv+ =  

2 2 2
2 1 12 (12 0 m/s) 2(9 80 m/s )(22 0 m) 24 0 m/sv v gy= + = . + . . = .  

EVALUATE:   The projection angle of 53 1. °  doesn’t enter into the calculation. The kinetic energy depends 
only on the magnitude of the velocity; it is independent of the direction of the velocity. 
(b) Nothing changes in the calculation. The expression derived in part (a) for 2v  is independent of the 
angle, so 2 24 0 m/s,v = .  the same as in part (a). 
(c) The ball travels a shorter distance in part (b), so in that case air resistance will have less effect. 

 7.6. IDENTIFY:   The normal force does no work, so only gravity does work and Eq. (7.4) applies. 
SET UP:   1 0.K =  The crate’s initial point is at a vertical height of sind α above the bottom of the ramp. 

EXECUTE:   (a) 2 ,0y =  1 sin .y d α=  1 grav,1 2 grav,2K U K U+ = +  gives grav,1 2.U K=  21
22sinmgd mvα =  

and 2 2 sin .v gd α=  

(b) 1 0,y =  2 sin .y d α= −  1 grav,1 2 grav,2K U K U+ = +  gives 2 grav,20 .K U= +  21
220 ( sin )mv mgd α= + −  

and 2 2 sin ,v gd α=  the same as in part (a). 
(c) The normal force is perpendicular to the displacement and does no work. 
EVALUATE:   When we use gravU mgy=  we can take any point as 0y =  but we must take y+  to be 
upward. 

 7.7. IDENTIFY:   The take-off kinetic energy of the flea goes into gravitational potential energy.  
SET UP:   Use f f i i.K U K U+ = +  Let i 0y =  and fy h=  and note that i 0U =  while f 0K =  at the 

maximum height. Consequently, conservation of energy becomes 21
i2 .mgh mv=  

EXECUTE:   (a) 2
i 2 2(9 80 m/s )(0 20 m) 2 0 m/s.v gh= = . . = .  
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(b) 6 2 7
i (0 50 10 kg)(9 80 m/s )(0 20 m) 9 8 10 J.K mgh − −= = . × . . = . ×  The kinetic energy per kilogram is 

7
i

6
9 8 10 J 2 0 J/kg.

0 50 10 kg
K
m

−

−
. ×= = .

. ×
 

(c) The human can jump to a height of h
h f 3

f

2 0 m(0 20 m) 200 m.
2 0 10 m

lh h
l −

⎛ ⎞⎛ ⎞ .= = . =⎜ ⎟⎜ ⎟ ⎜ ⎟. ×⎝ ⎠ ⎝ ⎠
 To attain this 

height, he would require a takeoff speed of: 2
i 2 2(9 80 m/s )(200 m) 63 m/s.v gh= = . =  

(d) The human’s kinetic energy per kilogram is 2i (9 80 m/s )(0 60 m) 5 9 J/kg.K gh
m

= = . . = .  

(e) EVALUATE:   The flea stores the energy in its tensed legs. 
 7.8. IDENTIFY and SET UP:   Apply Eq. (7.7) and consider how each term depends on the mass. 

EXECUTE:   The speed is v and the kinetic energy is 4K. The work done by friction is proportional to the 
normal force, and hence to the mass, and so each term in Eq. (7.7) is proportional to the total mass of the 
crate, and the speed at the bottom is the same for any mass. The kinetic energy is proportional to the mass, 
and for the same speed but four times the mass, the kinetic energy is quadrupled. 
EVALUATE:   The same result is obtained if we apply Σ = mF a  to the motion. Each force is proportional 
to m and m divides out, so a is independent of m. 

 7.9. IDENTIFY:   tot .B AW K K= −  The forces on the rock are gravity, the normal force and friction. 
SET UP:   Let 0y =  at point B and let y+  be upward. 0 50 m.Ay R= = .  The work done by friction is 
negative; 0 22 J.fW = − .  0.AK =  The free-body diagram for the rock at point B is given in Figure 7.9. The 

acceleration of the rock at this point is 2
rad ,a v /R=  upward. 

EXECUTE:   (a) (i) The normal force is perpendicular to the displacement and does zero work.  
(ii) 2

grav grav grav (0 20 kg)(9 80 m/s )(0 50 m) 0 98 J.,A ,B AW U U mgy= − = = . . . = .  

(b) tot grav 0 ( 0 22 J) 0 98 J 0 76 J.n fW W W W= + + = + − . + . = .  tot B AW K K= −  gives 21
tot2 .Bmv W=  

tot2 2(0 76 J) 2 8 m/s.
0 20 kgB

Wv
m

.= = = .
.

 

(c) Gravity is constant and equal to mg. n is not constant; it is zero at A and not zero at B. Therefore, 
k kf nμ=  is also not constant. 

(d) Σ =y yF ma  applied to Figure 7.9 gives rad.n mg ma− =  
2 2

2 [2 8 m/s](0 20 kg) 9 80 m/s 5 1 N.
0 50 m

vn m g
R

⎛ ⎞ ⎛ ⎞.= + = . . + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠
 

EVALUATE:   In the absence of friction, the speed of the rock at point B would be 2 3 1 m/s.gR = .  As the 
rock slides through point B, the normal force is greater than the weight 2 0 Nmg = .  of the rock. 

 

 

Figure 7.9 
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 7.10. IDENTIFY:   The potential energy is transformed into kinetic energy which is then imparted to the bone. 
SET UP:   The initial gravitational potential energy must be absorbed by the leg bones. i .U mgh=  

EXECUTE:   (a) 2(200 J),mgh =  so 2
400 J 0 68 m 68 cm.

(60 kg)(9 80 m/s )
h = = . =

.
 

(b) EVALUATE:   They flex when they land and their joints and muscles absorb most of the energy. 
(c) EVALUATE:   Their bones are more fragile so can absorb less energy without breaking and their 
muscles and joints are weaker and less flexible and therefore less able to absorb energy. 

 7.11. IDENTIFY:   Apply Eq. (7.7) to the motion of the car. 
SET UP:   Take 0y =  at point A. Let point 1 be A and point 2 be B. 

1 1 other 2 2K U W K U+ + = +  
EXECUTE:   1 0,U =  2 (2 ) 28,224 J,= =U mg R  other fW W=  

21
1 12 37,500 J,= =K mv  21

2 22 3840 JK mv= =  

The work-energy relation then gives 2 2 1 5400 J.fW K U K= + − = −  

EVALUATE:   Friction does negative work. The final mechanical energy 2 2( 32 064 J)K U ,+ =  is less than 
the initial mechanical energy 1 1( 37,500 J)+ =K U  because of the energy removed by friction work. 

 7.12. IDENTIFY:   Only gravity does work, so apply Eq. (7.5). 
SET UP:   1 0,v =  so 21

2 1 22 ( ).mv mg y y= −  

EXECUTE:   Tarzan is lower than his original height by a distance 1 2 (cos30 cos45 )y y l− = ° − °  so his 

speed is 2 (cos30 cos45 ) 7 9 m/s,v gl= ° − ° = .  a bit quick for conversation. 
EVALUATE:   The result is independent of Tarzan’s mass. 

 

 7.13.  1 0y =  

2 (8 00 m)sin36 9y = . . °  

2 4 80 my = .  

 Figure 7.13a   
 

(a) IDENTIFY and SET UP:   F  is constant so Eq. (6.2) can be used. The situation is sketched in  
Figure 7.13a. 
EXECUTE:   ( cos ) (110 N)(cos0 )(8 00 m) 880 JFW F sφ= = ° . =  

EVALUATE:   F  is in the direction of the displacement and does positive work. 
(b) IDENTIFY and SET UP:   Calculate W using Eq. (6.2) but first must calculate the friction force. Use the free-
body diagram for the oven sketched in Figure 7.13b to calculate the normal force n; then the friction force can 
be calculated from k kf nμ= .  For this calculation use coordinates parallel and perpendicular to the incline. 

 

EXECUTE:   Σ =y yF ma  
cos36.9 0n mg− ° =  
cos36.9n mg= °  

k k k cos36.9f n mgμ μ= = °  
2

k (0.25)(10.0 kg)(9.80 m/s )cos36.9 19.6 Nf = ° =  

Figure 7.13b  
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k( cos ) (19 6 N)(cos180 )(8 00 m) 157 JfW f sφ= = . ° . = −  
EVALUATE:   Friction does negative work. 
(c) IDENTIFY and SET UP:   ;U mgy=  take 0y =  at the bottom of the ramp. 

EXECUTE:   2
2 1 2 1( ) (10 0 kg)(9 80 m/s )(4 80 m 0) 470 JU U U mg y yΔ = − = − = . . . − =  

EVALUATE:   The object moves upward and U increases. 
(d) IDENTIFY and SET UP:   Use Eq. (7.7). Solve for KΔ .  
EXECUTE:   1 1 other 2 2K U W K U+ + = +  

2 1 1 2 otherK K K U U WΔ = − = − +  

otherK W UΔ = − Δ  

other 880 J 157 J 723 JF fW W W= + = − =  
470 JUΔ =  

Thus 723 J 470 J 253 J.KΔ = − =  
EVALUATE:   otherW  is positive. Some of otherW  goes to increasing U and the rest goes to increasing K. 

(e) IDENTIFY:   Apply Σ = mF a  to the oven. Solve for a  and then use a constant acceleration equation to 
calculate 2.v  
SET UP:   We can use the free-body diagram that is in part (b): 
Σ =x xF ma  

k sin36 9F f mg ma− − . ° =  

EXECUTE:   
2

2k sin36 9 110 N 19 6 N (10 kg)(9 80 m/s )sin36 9 3 16 m/s
10 0 kg

F f mga
m

− − . ° − . − . . °= = = .
.

 

SET UP:   1 0,xv =  23 16 m/s ,xa = .  0 8 00 m,x x− = .  2 ?xv =  
2 2
2 1 02 ( )x x xv v a x x= + −  

EXECUTE:   2
2 02 ( ) 2(3 16 m/s )(8 00 m) 7 11 m/sx xv a x x= − = . . = .  

Then 2 21 1
2 1 22 2 (10 0 kg)(7 11 m/s) 253 J.K K K mvΔ = − = = . . =  

EVALUATE:   This agrees with the result calculated in part (d) using energy methods. 
 7.14. IDENTIFY:   Use the information given in the problem with F kx=  to find k. Then 21

el 2 .U kx=  

SET UP:   x is the amount the spring is stretched. When the weight is hung from the spring, .F mg=  

EXECUTE:   
2(3 15 kg)(9 80 m/s ) 2205 N/m.

0 1340 m 0 1200 m
F mgk
x x

. .= = = =
. − .

 

el2 2(10 0 J) 0 0952 m 9 52 cm.
2205 N/m

Ux
k

.= ± = ± = ± . = ± .  The spring could be either stretched 9.52 cm or 

compressed 9.52 cm. If it were stretched, the total length of the spring would be 
12 00 cm 9 52 cm 21 52 cm.. + . = .  If it were compressed, the total length of the spring would be 
12 00 cm 9 52 cm 2 48 cm.. − . = .  
EVALUATE:   To stretch or compress the spring 9.52 cm requires a force 210 N.F kx= =  

 7.15. IDENTIFY:   Apply 21
el 2 .U kx=  

SET UP:   ,kx F=  so 1
2 ,U Fx=  where F is the magnitude of force required to stretch or compress the 

spring a distance x. 
EXECUTE:   (a) (1/2)(800 N)(0.200 m) 80.0 J.=  
(b) The potential energy is proportional to the square of the compression or extension; 

2(80.0 J) (0.050 m/0.200 m) 5.0 J.=  

EVALUATE:   We could have calculated 800 N 4000 N/m
0 200 m

Fk
x

= = =
.

 and then used 21
el 2U kx=  directly. 
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 7.16. IDENTIFY:   We treat the tendon like a spring and apply Hooke’s law to it. Knowing the force stretching 
the tendon and how much it stretched, we can find its force constant. 
SET UP:   Use on tendon .F kx=  In part (a), on tendonF  equals mg, the weight of the object suspended from it. 

In part(b), also apply 21
el 2U kx=  to calculate the stored energy. 

EXECUTE:   (a) 
2

on tendon (0 250 kg)(9 80 m/s ) 199 N/m.
0 0123 m

Fk
x

. .= = =
.

 

(b) on tendon 138 N 0.693m 69.3 cm;
199 N/m

= = = =Fx
k

 21
el 2 (199 N/m)(0.693 m) 47.8 J.= =U  

EVALUATE:   The 250 g object has a weight of 2.45 N. The 138 N force is much larger than this and 
stretches the tendon a much greater distance. 

 7.17. IDENTIFY:   Apply 21
el 2 .=U kx  

SET UP:   21
0 02 .U kx=  x is the distance the spring is stretched or compressed. 

EXECUTE:   (a) (i) 02x x=  gives 2 21 1
el 0 0 02 2(2 ) 4( ) 4 .U k x kx U= = =  (ii) 0/2=x x  gives 

2 21 1 1
el 0 0 02 4 2( /2) ( ) /4.= = =U k x kx U  

(b) (i) 02U U=  gives 2 21 1
02 22( )kx kx=  and 0 2.x x=  (ii) 0/2=U U  gives 2 21 1 1

02 2 2( )kx kx= and 

0/ 2.=x x  

EVALUATE:   U is proportional to 2x  and x is proportional to .U  
 7.18. IDENTIFY:   Apply Eq. (7.13). 

SET UP:   Initially and at the highest point, 0,v =  so 1 2 0.K K= =  other 0.W =  
EXECUTE:   (a) In going from rest in the slingshot’s pocket to rest at the maximum height, the potential 
energy stored in the rubber band is converted to gravitational potential energy; 

3 2(10 10  kg)(9 80 m/s ) (22 0 m) 2 16 J.U mgy −= = × . . = .  
(b) Because gravitational potential energy is proportional to mass, the larger pebble rises only 8.8 m. 
(c) The lack of air resistance and no deformation of the rubber band are two possible assumptions. 
EVALUATE:   The potential energy stored in the rubber band depends on k for the rubber band and the 
maximum distance it is stretched. 

 7.19. IDENTIFY and SET UP:   Use energy methods. There are changes in both elastic and gravitational potential 
energy; elastic; 21

2 ,U kx=  gravitational: .U mgy=  

EXECUTE:   (a) 21
2U kx=  so 2 2(3 20 J) 0 0632 m 6 32 cm

1600 N/m
Ux
k

.= = = . = .  

(b) Points 1 and 2 in the motion are sketched in Figure 7.19. 
 

 1 1 other 2 2+ + = +K U W K U  

other 0W =  (Only work is that done by gravity 
and spring force) 

1 0,=K  2 0K =  
0y =  at final position of book 

1 ( ),U mg h d= +  21
2 2U kd=  

Figure 7.19   
 

21
20 ( ) 0mg h d kd+ + + =  

The original gravitational potential energy of the system is converted into potential energy of the 
compressed spring. 
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21
2 0kd mgd mgh− − =  

21 1( ) 4 ( )
2

⎛ ⎞⎛ ⎞= ± +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
d mg mg k mgh

k
 

d must be positive, so ( )21 ( ) 2d mg mg kmgh
k

= + +  

21 (1 20 kg)(9 80 m/s )
1600 N/m

d = . . +
 

  
2 2 2((1 20 kg)(9 80 m/s )) 2(1600 N/m)(1 20 kg)(9 80 m/s )(0 80 m). . + . . .  

0.0074 m 0.1087 m 0.12 m 12 cmd = + = =  
EVALUATE:   It was important to recognize that the total displacement was ;h d+  gravity continues to do 
work as the book moves against the spring. Also note that with the spring compressed 0.12 m it exerts an 
upward force (192 N) greater than the weight of the book (11.8 N). The book will be accelerated upward 
from this position. 

 7.20. IDENTIFY:   Use energy methods. There are changes in both elastic and gravitational potential  energy. 
SET UP:   1 1 other 2 2.K U W K U+ + = +  Points 1 and 2 in the motion are sketched in Figure 7.20. 

 

The spring force and gravity are  
the only forces doing work on the cheese,  
so other 0W =  and grav el.= +U U U  

Figure 7.20  
 

EXECUTE:   Cheese released from rest implies 1 0.K =  
At the maximum height 2 0v =  so 2 0.K =  1 1,el 1,grav= +U U U  

1 0y =  implies 1,grav 0=U  
2 21 1

1,el 12 2 (1800 N/m)(0.15 m) 20.25 J= = =U kx  

(Here 1x  refers to the amount the spring is stretched or compressed when the cheese is at position 1; it is 
not the x-coordinate of the cheese in the coordinate system shown in the sketch.) 

2 2,el 2,grav= +U U U  2,grav 2,=U mgy  where 2y  is the height we are solving for. 2,el 0=U  since now the 

spring is no longer compressed. Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 1,el 2,grav=U U  

2 2
20 25 J 20 25 J 1 72 m

(1 20 kg)(9 80 m/s )
y

mg
. .= = = .

. .
 

EVALUATE:   The description in terms of energy is very simple; the elastic potential energy originally 
stored in the spring is converted into gravitational potential energy of the system. 

 7.21. IDENTIFY:   Apply Eq. (7.13). 
SET UP:   other 0.W =  As in Example 7.7, 1 0K =  and 1 0 0250 J.U = .  

EXECUTE:   For 2 0 20 m/s,= .  v  2 0 0040 J.K = .  21
2 20 0210 J ,U kx= . =  and 2(0 0210J) 0 092m.

5 00N/m
.= ± = ± .

.
x  

The glider has this speed when the spring is stretched 0.092 m or compressed 0.092 m. 
EVALUATE:   Example 7.7 showed that 0 30 m/sxv = .  when 0 0800 m.x = .  As x increases, xv  decreases, 
so our result of 0 20 m/sxv = .  at 0 092 mx = .  is consistent with the result in the example. 
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 7.22. IDENTIFY and SET UP:   Use energy methods. The elastic potential energy changes. In part (a) solve for 2K  

and from this obtain 2.v  In part (b) solve for 1U  and from this obtain 1.x  
(a) 1 1 other 2 2K U W K U=+ + +  
point 1: the glider is at its initial position, where 1 0.100 mx =  and 1 0v =  
point 2: the glider is at 0x =  
EXECUTE:   1 0K =  (released from rest), 21

2 22K mv=  
21

1 12 ,U kx=  2 0,U =  other 0W =  (only the spring force does work) 

Thus 2 21 1
1 22 2 .kx mv=  (The initial potential energy of the stretched spring is converted entirely into kinetic 

energy of the glider.) 

2 1
5.00 n/m(0.100 m) 0.500 m/s
0.200 kg

= = =kv x
m

 

(b) The maximum speed occurs at 0,x =  so the same equation applies. 
2 21 1
1 22 2kx mv=  

1 2
0.200kg2.50 m/s 0.500 m
5.00N/m

mx v
k

= = =  

EVALUATE:   Elastic potential energy is converted into kinetic energy. A larger 1x  gives a larger 2.v  

 7.23. IDENTIFY:   Only the spring does work and Eq. (7.11) applies. ,F kxa
m m

−= =  where F is the force the 

spring exerts on the mass. 
SET UP:   Let point 1 be the initial position of the mass against the compressed spring, so 1 0K =  and 

1 11 5 J.U = .  Let point 2 be where the mass leaves the spring, so el,2 0.U =  

EXECUTE:   (a) 1 el,1 2 el,2K U K U+ = +  gives el,1 2.U K=  21
2 el,12mv U= and 

el,1
2

2 2(11 5 J) 3 03 m/s.
2 50 kg

U
v

m
.= = = .

.
 

K is largest when elU  is least and this is when the mass leaves the spring. The mass achieves its maximum 
speed of 3.03 m/s as it leaves the spring and then slides along the surface with constant speed. 
(b) The acceleration is greatest when the force on the mass is the greatest, and this is when the spring has 

its maximum compression. 21
el 2U kx=  so el2 2(11 5 J) 0 0959 m.

2500 N/m
Ux
k

.= − = = − .2  The minus sign 

indicates compression. xF kx ma= − =  and 2(2500 N/m)( 0 0959 m) 95 9 m/s .
2 50 kgx

kxa
m

− .= − = − = .
.

 

EVALUATE:   If the end of the spring is displaced to the left when the spring is compressed, then xa  in part 
(b) is to the right, and vice versa. 

 7.24. (a) IDENTIFY and SET UP:   Use energy methods. Both elastic and gravitational potential energy changes. 
Work is done by friction. 
Choose point 1 as in Example 7.9 and let that be the origin, so 1 0.y =  Let point 2 be 1.00 m below point 1, 
so 2 1 00 m.y = − .  
EXECUTE:   1 1 other 2 2K U W K U+ + = +  

2 21 1
1 12 2 (2000 kg)(25 m/s) 625 000 J,K mv ,= = =  1 0U =  

other 2 (17 000 N)(1 00 m) 17 000 JW f y , ,= − = − . = −  
21

2 22K mg=  
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21
2 2,grav 2,el 2 22= + = +U U U mgy ky  

2 5 21
2 2(2000 kg)(9 80 m/s )( 1 00 m) (1 41 10  N/m)(1 00 m)U = . − . + . × .  

2 19,600 J 70,500 J 50,900 J= − + = +U  

Thus 21
22625,000 J 17,000 J 50,900 J− = +mv  

21
22 557,100 J=mv  

2
2(557,100 J) 23.6 m/s

2000 kg
= =v  

EVALUATE:   The elevator stops after descending 3.00 m. After descending 1.00 m it is still moving but 
has slowed down. 
(b) IDENTIFY:   Apply Σ = mF a  to the elevator. We know the forces and can solve for .a  
SET UP:   The free-body diagram for the elevator is given in Figure 7.24. 

 

 EXECUTE:   spr ,=F kd  where d is the distance  
the spring is compressed 
Σ =y yF ma  

k sprf F mg ma+ − =  

k + − =f kd mg ma  

Figure 7.24   
 

5 2
2k 17,000 N (1.41 10  N/m)(1.00 m) (2000 kg)(9.80 m/s ) 69.2 m/s

2000 kg
+ − + × −= = =f kd mga
m

 

We calculate that a is positive, so the acceleration is upward. 
EVALUATE:   The velocity is downward and the acceleration is upward, so the elevator is slowing down at 
this point. Note that 7 1 ;a g= .  this is unacceptably high for an elevator. 

 7.25. IDENTIFY:   Apply Eq. (7.13) and .F ma=  
SET UP:   other 0.W =  There is no change in grav.U 1 0,K =  2 0.U =  

EXECUTE:   2 21 1
2 2 .xkx mv=  The relations for m, ,xv  k and x are 2 2 and 5 .= =xkx mv kx mg  

Dividing the first equation by the second gives 
2

,
5
xvx
g

=  and substituting this into the second gives 

2

225 .
x

mgk
v

=  

(a) 
2 2

5
2

(1160 kg)(9 80 m/s )25 4 46 10  N/m
(2 50 m/s)

k .= = . ×
.

 

(b) 
2

2
(2.50 m/s) 0.128 m
5(9.80 m/s )

= =x  

EVALUATE:   Our results for k and x do give the required values for xa and :xv  
5

2(4 46 10  N/m)(0 128 m) 49 2 m/s 5 0
1160 kgx

kxa g
m

. × .= = = . = .  and 2 5 m/s.x
kv x
m

= = .  

 7.26. IDENTIFY:   The spring force is conservative but the force of friction is nonconservative. Energy is 
conserved during the process. Initially all the energy is stored in the spring, but part of this goes to kinetic 
energy, part remains as elastic potential energy, and the rest does work against friction. 
SET UP:   Energy conservation: 1 1 other 2 2,K U W K U+ + = +  the elastic energy in the spring is 21

2 ,=U kx  

and the work done by friction is f k k .W f s mgsμ= − = −  
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EXECUTE:   The initial and final elastic potential energies are 
2 21 1

1 12 2 (840 N/m)(0 0300 m) 0 378 JU kx= = . = .  and 2 21 1
2 22 2 (840 N/m)(0 0100 m) 0 0420 J.U kx= = . = .  The 

initial and final kinetic energies are 1 0K =  and 21
2 22 .K mv=  The work done by friction is 

2
other k kk (0 40)(2 50 kg)(9 8 m/s )(0 0200 m) 0 196 J.fW W f s mgsμ= = − = − = − . . . . = − .  Energy conservation 

gives 21
2 2 1 1 other 22 0 378 J ( 0 196 J) 0 0420 J 0 140 J.K mv K U W U= = + + − = . + − . − . = .  Solving for 2v  gives 

2
2

2 2(0 140 J) 0 335 m/s.
2 50 kg

Kv
m

.= = = .
.

 

EVALUATE:   Mechanical energy is not conserved due to friction. 
 7.27. IDENTIFY:   Apply kk cos .fW f s φ=  k k .f nμ=  

SET UP:   For a circular trip the distance traveled is 2 .π=d r  At each point in the motion the friction force 
and the displacement are in opposite directions and 180 .φ = °  Therefore, k kk (2 ).π= − = −fW f d f r  n mg=  

so k k .μ=f mg  

EXECUTE:   (a) 2
kk 2 (0 250)(10 0 kg)(9 80 m/s )(2 )(2 00 m) 308 J.μ π π= − = − . . . . = −fW mg r  

(b) The distance along the path doubles so the work done doubles and becomes 616 J.−  
(c) The work done for a round trip displacement is not zero and friction is a nonconservative force. 
EVALUATE:   The direction of the friction force depends on the direction of motion of the object and that is 
why friction is a nonconservative force. 

 7.28. IDENTIFY:   grav cos .W mg φ=  
SET UP:   When he moves upward, 180φ = °  and when he moves downward, 0 .φ = °  When he moves 
parallel to the ground, 90 .φ = °  

EXECUTE:   (a) 2
grav (75 kg)(9 80 m/s )(7 0 m)cos180 5100 J.W = . . ° = −  

(b) 2
grav (75 kg)(9 80 m/s )(7 0 m)cos0 5100 J.W = . . ° = +  

(c) 90φ = °  in each case and grav 0W =  in each case. 
(d) The total work done on him by gravity during the round trip is 5100 J 5100 J 0.− + =  
(e) Gravity is a conservative force since the total work done for a round trip is zero. 
EVALUATE:   The gravity force is independent of the position and motion of the object. When the object 
moves upward gravity does negative work and when the object moves downward gravity does positive 
work. 

 7.29. IDENTIFY:   Since the force is constant, use cos .W Fs φ=  
SET UP:   For both displacements, the direction of the friction force is opposite to the displacement and 

180 .φ = °  
EXECUTE:   (a) When the book moves to the left, the friction force is to the right, and the work is 

(1 2 N)(3 0 m) 3 6 J.− . .  = − .   
(b) The friction force is now to the left, and the work is again 3 6 J.− .  
(c) 7 2 J.− .  
(d) The net work done by friction for the round trip is not zero, and friction is not a conservative force. 
EVALUATE:   The direction of the friction force depends on the motion of the object. For the  gravity force, 
which is conservative, the force does not depend on the motion of the object. 

 7.30. IDENTIFY and SET UP:   The force is not constant so we must use Eq. (6.14) to calculate W. The properties 
of work done by a conservative force are described in Section 7.3. 

2

1
,W d= ⋅∫ F l  2 ˆxα= −F i  

EXECUTE:   (a) ˆd dy=l j  (x is constant; the displacement is in the -directiony+ ) 

0d⋅ =F l  (since ˆ ˆ 0)⋅ =i j  and thus 0.W =  

(b) ˆd dx=l i  
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2 2ˆ ˆ( ) ( )d x dx x dxα α⋅ = − ⋅ = −  F l i i  

2 2

11

2
2 3 3 3 3 31 1

2 13 3
12 N/m( ) |  ( )  ((0 300 m) (0 10 m) ) 0 10 J

3
α α= − = − = − − = − . − . = − .∫

x x
xx

W x dx ax x x  

(c) ˆd dx=l i  as in part (b), but now 1 0 30 mx = .  and 2 0 10 mx = .  

3 31
2 13 ( ) 0 10 JW x xα= − − = + .  

(d) EVALUATE:   The total work for the displacement along the x-axis from 0.10 m to 0.30 m and then 
back to 0.10 m is the sum of the results of parts (b) and (c), which is zero. The total work is zero when the 
starting and ending points are the same, so the force is conservative. 
EXECUTE:   3 3 3 31 1 1

2 1 1 23 3 31 2 ( )x xW x x x xα α α→ = − − = −  

The definition of the potential energy function is 1 21 2 .x xW U U→ = −  Comparison of the two expressions 

for W gives 31
3 .α=U x  This does correspond to 0U =  when 0.x =  

EVALUATE:   In part (a) the work done is zero because the force and displacement are perpendicular. In 
part (b) the force is directed opposite to the displacement and the work done is negative. In part (c) the 
force and displacement are in the same direction and the work done is positive. 

 7.31. IDENTIFY and SET UP:   The friction force is constant during each displacement and Eq. (6.2) can be used 
to calculate work, but the direction of the friction force can be different for different displacements. 

2
k (0 25)(1 5 kg)(9 80 m/s ) 3 675 N;μ= = . . . = .f mg  direction of f  is opposite to the motion. 

EXECUTE:   (a) The path of the book is sketched in Figure 7.31a. 
 

 

Figure 7.31a 
 

For the motion from you to Beth the friction force is directed opposite to the displacement s  and 
1 (3 675 N)(8 0 m) 29 4 J.W fs= − = − . . = − .  

For the motion from Beth to Carlos the friction force is again directed opposite to the displacement and 
2 29 4 J.W = − .  

tot 1 2 29 4 J 29 4 J 59 JW W W= + = − . − . = −  
(b) The path of the book is sketched in Figure 7.31b. 

 

 22(8 0 m) 11 3 ms = . = .  

Figure 7.31b   
 

f  is opposite to ,s  so (3 675 N)(11 3 m) 42 JW fs= − = − . . = −  
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(c) For the motion from you to Kim (Figure 7.31c) 
= −W fs  

(3 675 N)(8 0 m) 29 4 JW = − . . = − .  

Figure 7.31c   
 
 

 

For the motion from Kim to you (Figure 7.31d) 
29 4 JW fs= − = − .  

Figure 7.31d   
 

The total work for the round trip is 29 4 J 29 4 J 59 J.− . − . = −  
(d) EVALUATE:   Parts (a) and (b) show that for two different paths between you and Carlos, the work done 
by friction is different. Part (c) shows that when the starting and ending points are the same, the total work 
is not zero. Both these results show that the friction force is nonconservative. 

 7.32. IDENTIFY:   Some of the initial gravitational potential energy is converted to kinetic energy, but some of it 
is lost due to work by the nonconservative friction force. 
SET UP:   The energy of the box at the edge of the roof is given by: mech, f mech, i k .= −E E f s  Setting 

f 0=y  at this point, i (4 25 m) sin36 2 50 m= . ° = . .y  Furthermore, by substituting i 0K =  and 21
f f2K mv=  

into the conservation equation, 21
f i k2mv mgy f s= −  or f i k i k2 2 / 2 ( / ).v gy f sg w g y f s w= − = −  

EXECUTE:   [ ]2
f 2(9 80 m/s ) (2 50 m) (22 0 N)(4 25 m)/(85 0 N) 5 24 m/s.v = . . − . . . = .  

EVALUATE:   Friction does negative work and removes mechanical energy from the system. In the absence 
of friction the final speed of the toolbox would be 7 00 m/s. .  

 7.33. IDENTIFY:   Some of the mechanical energy of the skier is converted to internal energy by the 
nonconservative force of friction on the rough patch. 
SET UP:   For part (a) use mech, mech, i kfE E f s= −  where k k .f mgμ=  Let f 0y =  at the bottom of the hill; 

then i 2 50 my = .  along the rough patch. The energy equation is thus 2 21 1
f i i k2 2 .mv mv mgy mgsμ= + −  

Solving for her final speed gives 2
f i i k2 2 .v v gy gsμ= + −  For part (b), the internal energy is calculated 

as the negative of the work done by friction: k k .fW f s mgsμ− = + = +  

EXECUTE:   (a) 2 2 2
f (6 50 m/s) 2(9 80 m/s )(2 50 m) 2(0 300)(9 80 m/s )(3 50 m) 8 41 m/s.v = . + . . − . . . = .  

(b) 2
kInternal energy (0 300)(62 0 kg)(9 80 m/s )(3 50 m) 638 J.mgsμ= = . . . . =  

EVALUATE: Without friction the skier would be moving faster at the bottom of the hill than at the top, but 
in this case she is moving slower because friction converted some of her initial kinetic energy into internal 
energy. 

 7.34. IDENTIFY and SET UP:   Use Eq. (7.17) to calculate the force from ( ).U x  Use coordinates where the origin 
is at one atom. The other atom then has coordinate x. 
EXECUTE:    

6 6
66 6 7

1 6
x

dU d C d CF C
dx dx dxx x x

⎛ ⎞ ⎛ ⎞= − = − − = + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The minus sign mean that xF  is directed in the -direction,x−  toward the origin. The force has magnitude 
7

66 /C x  and is attractive. 

EVALUATE:   U depends only on x so F  is along the x-axis; it has no y or z components. 
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 7.35. IDENTIFY:   Apply Eq. (7.16). 
SET UP:   The sign of xF  indicates its direction. 

EXECUTE:   3 4 34 (4 8 J m ) .x
dUF x / x
dx

α= − = − = − .   4 3( 0.800 m) (4.8 J/m )( 0.80 m) 2.46 N.−  = −  −  =  xF  The 

force is in the -direction.x+  
EVALUATE:   0xF >  when 0x <  and 0xF <  when 0,x >  so the force is always directed towards the 
origin. 

 7.36. IDENTIFY:   Apply Eq. (7.18). 

SET UP:   2 3
1 2d

dx x x
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 and 2 3
1 2 .d

dy y y

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

EXECUTE:   ˆ ˆU U
x y

∂ ∂= − −
∂ ∂

F i j  since U has no z-dependence. 3 3
2 2 and  ,  so
x y

U U
x y

α α∂ − ∂ −= =∂ ∂  

3 3 3 3
2 2ˆ ˆ 2 .
x y x y

α α
⎛ ⎞ ⎛ ⎞− −= − +  = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i jF i j  

EVALUATE:   xF  and x have the same sign and yF  and y have the same sign. When 0,x >  xF  is in the 
-direction,x+  and so forth. 

 7.37. IDENTIFY:   From the potential energy function of the block, we can find the force on it, and from the force 
we can use Newton’s second law to find its acceleration. 

SET UP:   The force components are x
UF
x

∂= −
∂

 and .y
UF
y

∂= −
∂

 The acceleration components are 

/  and / .= =x x y ya F m a F m  The magnitude of the acceleration is 2 2
x ya a a= +  and we can find its angle 

with the +x axis using tan / .θ = y xa a  

EXECUTE:   2(11 6 J/m )x
UF x
x

∂= − = − .
∂

 and 3 2(10 8 J/m ) .y
UF y
y

∂= − = .
∂

 At the point 

( 0 300 m,x = . 0 600 my = . ), 2(11 6 J/m )(0 300 m) 3 48 NxF = − . . = − .  and 

3 2(10 8 J/m )(0 600 m) 3 89 N.yF = . . = .  Therefore 287 0 m/sx
x
Fa
m

= = − .  and 297 2 m/s ,y
y
F

a
m

= = .  giving 

2 2 2130 m/sx ya a a= + =  and 97 2tan ,
87 0

θ .=
.

 so 48 2θ = . °.  The direction is o132  counterclockwise from 

the -axis.x+  
EVALUATE:   The force is not constant, so the acceleration will not be the same at other points. 

 7.38. IDENTIFY:   Apply Eq. (7.16). 

SET UP:   dU
dx

 is the slope of the U versus x graph. 

EXECUTE:   (a) Considering only forces in the x-direction, x
dUF
dx

= −  and so the force is zero when the 

slope of the U vs x graph is zero, at points b and d. 
(b) Point b is at a potential minimum; to move it away from b would require an input of energy, so this 
point is stable. 
(c) Moving away from point d involves a decrease of potential energy, hence an increase in kinetic energy, 
and the marble tends to move further away, and so d is an unstable point. 
EVALUATE:   At point b, xF  is negative when the marble is displaced slightly to the right and xF  is 
positive when the marble is displaced slightly to the left, the force is a restoring force, and the equilibrium 
is stable. At point d, a small displacement in either direction produces a force directed away from d and the 
equilibrium is unstable. 
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 7.39. IDENTIFY and SET UP:   Use Eq. (7.17) to calculate the force from U. At equilibrium 0.F =  
(a) EXECUTE:   The graphs are sketched in Figure 7.39. 

 

 
12 6
a bU
r r

= −  

13 7
12 6dU a bF

dr r r
= − = + −  

Figure 7.39   
 

(b) At equilibrium 0,=F  so 0dU
dr

=  

0F =  implies 13 7
12 6 0a b
r r

+ − =  

66 12 ;br a=  solution is the equilibrium distance 1 6
0 (2 ) /r a/b=  

U is a minimum at this r; the equilibrium is stable. 
(c) At 1/6(2 / ) ,=r a b  12 6 2 2/ / ( /2 ) ( /2 ) /4 .= − = − = −U a r b r a b a b b a b a  

At ,r → ∞  0U = .  The energy that must be added is 2/4 .−Δ =U b a  

(d) 1/6 10
0 (2 / ) 1 13 10  m−= = . ×r a b  gives that 

60 62 / 2 082 10  m−= . ×a b  and 59 6/4 2 402 10  m−= . ×b a  
2 18/4 ( /4 ) 1 54 10  J−= = . ×b a b b a  

59 6 18(2 402 10  m ) 1 54 10  Jb − −. × = . ×  and 78 66 41 10  J m .b −= . × ⋅  

Then 60 62 / 2 082 10  m−= . ×a b  gives 60 6( /2)(2 082 10  m )−= . × =a b  
78 6 60 6 138 121

2 (6 41 10  J m ) (2 082 10  m ) 6 67 10  J m− − −. × ⋅ . × = . × ⋅  

EVALUATE:   As the graphs in part (a) show, ( )F r  is the slope of ( )U r  at each r. ( )U r  has a minimum 
where 0.F =  

 7.40. IDENTIFY:   For the system of two blocks, only gravity does work. Apply Eq. (7.5). 
SET UP:   Call the blocks A and B, where A is the more massive one. 1 1 0.A Bv v= =  Let 0y =  for each 
block to be at the initial height of that block, so 1 1 0.A By y= =  2 1 20 mAy = − .  and 2 1 20 m.By = + .  

2 2 2 3 00 m/s.A Bv v v= = = .  

EXECUTE:   Eq. (7.5) gives 21
220 ( ) (1 20 m)( ) 15 0 kg= + + . − ⋅ + = . ⋅A B B A A Bm m v g m m m m  

2 21
2 (15 0 kg)(3 00 m/s) (9 80 m/s )(1 20 m)(15 0 kg 2 ).Am. . + . . . −  Solving for Am  gives 10.4 kg.=Am   

And then 4.6 kg.=Bm  
EVALUATE:   The final kinetic energy of the two blocks is 68 J. The potential energy of block A decreases 
by 122 J. The potential energy of block B increases by 54 J. The total decrease in potential energy is 
122 J 54 J 68 J,− =  and this equals the increase in kinetic energy of the system. 

 7.41. IDENTIFY:   Apply Σ = mF a to the bag and to the box. Apply Eq. (7.7) to the motion of the system of the 
box and bucket after the bag is removed. 
SET UP:   Let 0y =  at the final height of the bucket, so 1 2 00 my = .  and 2 0y = . 1 0.K =  The box and the 

bucket move with the same speed v, so 21
2 box bucket2 ( ) .K m m v= +  other k ,W f d= −  with 2 00 md = .  and 

k k box .f m gμ=  Before the bag is removed, the maximum possible friction force the roof can exert on the 

box is 2(0 700)(80 0 kg 50 0 kg)(9 80 m/s ) 892 N.. . + . . =  This is larger than the weight of the bucket (637 N), 
so before the bag is removed the system is at rest. 
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EXECUTE:   (a) The friction force on the bag of gravel is zero, since there is no other horizontal force on 
the bag for friction to oppose. The static friction force on the box equals the weight of the bucket, 637 N. 

(b) Eq. (7.7) gives 21
bucket 1 k tot2 ,m gy f d m v− =  with tot 145 0 kg.m = .  bucket 1 k box

tot

2 ( ).μ= −v m gy m gd
m

 

2 22 [(65 0 kg)(9 80 m/s )(2 00 m) (0 400)(80 0 kg)(9 80 m/s )(2 00 m)].
145 0 kg

v = . . . − . . . .
.

 

2 99 m/s.v = .  
EVALUATE:   If we apply Σ = mF a  to the box and to the bucket we can calculate their common 
acceleration a. Then a constant acceleration equation applied to either object gives 2 99 m/s,v = .  in 
agreement with our result obtained using energy methods. 

 7.42. IDENTIFY:   Apply Eq. (7.14). 
SET UP:   Only the spring force and gravity do work, so other 0.W =  Let 0y =  at the horizontal surface. 
EXECUTE:   (a) Equating the potential energy stored in the spring to the block's kinetic energy, 

2 21 1
2 2 ,kx mv=  or 400 N/m (0 220 m) 3 11 m/s.

2 00 kg
kv x
m

= = .  = .
.  

 

(b) Using energy methods directly, the initial potential energy of the spring equals the final gravitational 

potential energy, 21
2 sin ,kx mgL θ=  or 

2 21 1
2 2

2

(400 N/m)(0 220 m)
0 821 m.

sin (2 00 kg)(9 80 m/s )sin37 0

kx
L

mg θ
.

= = = .
. . . °

 

EVALUATE:   The total energy of the system is constant. Initially it is all elastic potential energy stored in 
the spring, then it is all kinetic energy and finally it is all gravitational potential energy. 

 7.43. IDENTIFY:   Use the work-energy theorem, Eq. (7.7). The target variable kμ  will be a factor in the work 
done by friction. 
SET UP:   Let point 1 be where the block is released and let point 2 be where the block stops, as shown in 
Figure 7.43. 

1 1 other 2 2K U W K U+ + = +  
 

 Work is done on the block by  
the spring and by friction,  
so other fW W=  and el.U U=  

Figure 7.43   
 

EXECUTE:   1 2 0K K= =  
2 21 1

1 1 el 12 2 (100 N/m)(0 200 m) 2 00 J,U U kx= = = . = .  

2 2 el 0,,U U= =  since after the block leaves the spring has given up all its stored energy 

( )other k k k( cos ) cos ,fW W f s mg s mgsφ μ φ μ= = = = −  since 180φ = °  (The friction force is directed 
opposite to the displacement and does negative work.) 
Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1 el 0, fU W+ =  

k 1 el,mgs Uμ =  

1 el
k 2

2.00 J 0 41.
(0 50 kg)(9 80 m/s )(1 00 m)

,U
mgs

μ = = = .
. . .

 

EVALUATE:   1 el 0, fU W+ =  says that the potential energy originally stored in the spring is taken out of the 

system by the negative work done by friction. 
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 7.44. IDENTIFY:   Apply Eq. (7.14). Calculate kf  from the fact that the crate slides a distance 5 60 mx = .  
before coming to rest. Then apply Eq. (7.14) again, with 2 00 m.x = .  
SET UP:   1 el 360 J.= =U U  2 0.=U  1 0.=K  other k .W f x= −  
EXECUTE:   Work done by friction against the crate brings it to a halt: 1 other.U W= −  

k potential energy of compressed spring ,f x =  and k
360 J 64 29 N.

5 60 m
f = = .

.
 

The friction force working over a 2.00-m distance does work equal to 
k (64 29 N)(2 00 m) 128 6 J.f x− = − . . = − .  The kinetic energy of the crate at this point is thus 

360 J 128 6 J 231 4 J,− .  = .   and its speed is found from 2/2 231 4 J,= .mv  so 2(231 4 J) 3 04 m/s.
50 0 kg

v .= = .
.

 

EVALUATE:   The energy of the compressed spring goes partly into kinetic energy of the crate and is partly 
removed by the negative work done by friction. After the crate leaves the spring the crate slows down as 
friction does negative work on it. 

 7.45. IDENTIFY:   The mechanical energy of the roller coaster is conserved since there is no friction with the 
track. We must also apply Newton’s second law for the circular motion. 
SET UP:   For part (a), apply conservation of energy to the motion from point A to point B: 

grav gravB ,B A ,AK U K U + = +  with 0.AK =  Defining 0By =  and 13 0 m,= .Ay  conservation of energy 

becomes 21
2 B Amv mgy=  or 2 .B Av gy=  In part (b), the free-body diagram for the roller coaster car at 

point B is shown in Figure 7.45. y yF maΣ =  gives rad ,mg n ma+ =  where 2
rad / .a v r=  Solving for the 

normal force gives 
2

.vn m g
r

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

 
Figure 7.45 

 

EXECUTE:   (a) 22(9 80 m/s )(13 0 m) 16 0 m/s.Bv = . . = .  

(b) 
2

2 4(16 0 m/s)(350 kg) 9 80 m/s 1 15 10 N.
6 0 m

n
⎡ ⎤.= − . = . ×⎢ ⎥

.⎢ ⎥⎣ ⎦
 

EVALUATE:   The normal force n is the force that the tracks exert on the roller coaster car. The car exerts a 
force of equal magnitude and opposite direction on the tracks. 

 7.46. IDENTIFY:   Apply Eq. (7.14) to relate h and .Bv  Apply Σ = mF a  at point B to find the minimum speed 
required at B for the car not to fall off the track. 
SET UP:   At B, 2 ,Ba v /R=  downward. The minimum speed is when 0n→ and 2 .Bmg mv /R=  The 

minimum speed required is .Bv gR=  1 0K = and other 0.W =  

EXECUTE:   (a) Eq. (7.14) applied to points A and B gives 21
2 .A B BU U mv− =  The speed at the top must be 

at least .gR  Thus, 1 5( 2 ) ,  or   .
2 2

mg h R mgR h R− > >  

(b) Apply Eq. (7.14) to points A and C. (2 50) ,A C CU U Rmg K− = . =  so 

2(5 00) (5 00)(9 80 m/s )(20 0 m) 31 3 m/s.Cv gR= . = . . . = .  
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The radial acceleration is 
2

2
rad 49 0 m/s .Cva

R
= = .  The tangential direction is down, the normal force at 

point C is horizontal, there is no friction, so the only downward force is gravity, and 2
tan 9 80 m/s .a g= = .   

EVALUATE:   If 5
2 ,h R>  then the downward acceleration at B due to the circular motion is greater than g 

and the track must exert a downward normal force n. n increases as h increases and hence 
Bv  increases. 

 7.47. (a) IDENTIFY:   Use work-energy relation to find the kinetic energy of the wood as it enters the rough 
bottom. 
SET UP:   Let point 1 be where the piece of wood is released and point 2 be just before it enters the rough 
bottom. Let 0y =  be at point 2. 
EXECUTE:   1 2U K=  gives 2 1 78 4 J.K mgy= = .  
IDENTIFY:   Now apply work-energy relation to the motion along the rough bottom. 
SET UP:   Let point 1 be where it enters the rough bottom and point 2 be where it stops. 

1 1 other 2 2K U W K U+ + = +  
EXECUTE:   other k ,fW W mgsμ= = −  2 1 2 0;K U U= = =  1 78 4 JK = .  

k78 4 J 0;mgsμ. − =  solving for s gives 20 0 m.s = .  
The wood stops after traveling 20.0 m along the rough bottom. 
(b) Friction does 78 4 J− .  of work. 
EVALUATE:   The piece of wood stops before it makes one trip across the rough bottom. The final mechanical 
energy is zero. The negative friction work takes away all the mechanical energy initially in the system. 

 7.48. IDENTIFY:   Apply Eq. (7.14) to the rock. other k
.fW W=  

SET UP:   Let 0y =  at the foot of the hill, so 1 0=U  and 2 ,=U mgh  where h is the vertical height of the 
rock above the foot of the hill when it stops. 
EXECUTE:   (a) At the maximum height, 2 0.=K  Eq. (7.14) gives Bottom Topk

.+ =fK W U  

2
0 k

1 cos  .
2

μ θ− =mv mg d mgh  / sin ,d h θ=  so 2
0 k

1 cos .
2 sin

hv g ghμ θ
θ

− =  

2 2 21 cos40(15 m/s) (0 20)(9 8 m/s ) (9 8 m/s )
2 sin 40

h h°− . . = .
°

 and 9 3 m.h = .  

(b) Compare maximum static friction force to the weight component down the plane. 
2

s s cos (0 75)(28 kg)(9 8 m/s )cos40 158 N.f mgμ θ= = . . ° =
2

ssin (28 kg)(9 8 m/s )(sin 40 ) 176 N ,mg fθ = . ° = >  so the rock will slide down. 
(c) Use same procedure as in part (a), with 9 3 mh = .   and Bv  being the speed at the bottom of the hill. 

Top Bk
.fU W K+ =  2

k B
1cos

sin 2
hmgh mg mvμ θ

θ
− =  and 

kB 2 2 cos sin 11 8 m/s./v gh ghμ θ θ= −  = .  

EVALUATE:   For the round trip up the hill and back down, there is negative work done by friction and the 
speed of the rock when it returns to the bottom of the hill is less than the speed it had when it started up the hill. 

 7.49. IDENTIFY:   Apply Eq. (7.7) to the motion of the stone. 
SET UP:   1 1 other 2 2K U W K U+ + = +  
Let point 1 be point A and point 2 be point B. Take 0y =  at point B. 

EXECUTE:   2 21 1
1 22 21 ,mgy mv mv+ =  with 20 0 mh = .  and 1 10 0 m/sv = .  

2
2 1 2 22 2 m/sv v gh= + = .  

EVALUATE:   The loss of gravitational potential energy equals the gain of kinetic energy. 
(b) IDENTIFY:   Apply Eq. (7.8) to the motion of the stone from point B to where it comes to rest against 
the spring. 
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SET UP:   Use 1 1 other 2 2,K U W K U+ + = +  with point 1 at B and point 2 where the spring has its maximum 
compression x. 
EXECUTE:   1 2 2 0;= = =U U K  21

1 12K mv=  with 1 22 2 m/sv = .  
21

other el 2k ,fW W W mgs kxμ= + = −-  with 100 ms x= +  

The work-energy relation gives 1 other 0.+ =K W  
2 21 1
12 2k 0mv mgs kxμ− − =  

Putting in the numerical values gives 
2 29 4 750 0.x x+ . − =  The positive root to this equation is 16 4 m.x = .  

EVALUATE:   Part of the initial mechanical (kinetic) energy is removed by friction work and the rest goes 
into the potential energy stored in the spring. 
(c) IDENTIFY and SET UP:   Consider the forces. 
EXECUTE:   When the spring is compressed 16 4 mx = .  the force it exerts on the stone is 

el 32 8 N.= = .F kx  The maximum possible static friction force is 
2

s smax (0 80)(15 0 kg)(9 80 m/s ) 118 N.f mgμ= = . . . =  
EVALUATE:   The spring force is less than the maximum possible static friction force so the stone remains 
at rest. 

 7.50. IDENTIFY:   Once the block leaves the top of the hill it moves in projectile motion. Use Eq. (7.14) to relate 
the speed Bv  at the bottom of the hill to the speed Topv  at the top and the 70 m height of the hill. 

SET UP:   For the projectile motion, take y+  to be downward. 0,=xa  .ya g=  0 Top,xv v=  0 0.yv =  For 
the motion up the hill only gravity does work. Take 0y =  at the base of the hill. 

EXECUTE:   First get speed at the top of the hill for the block to clear the pit. 21 .
2

y gt=  

2 2120 m (9 8 m/s ) .
2

t= .  2 0 s.t = .  Then Top 40 mv t =  gives Top
40 m 20 m/s.
2 0 s

v = =
.

 

Energy conservation applied to the motion up the hill: Bottom Top TopK U K= +  gives 

2 2
B Top

1 1 .
2 2
mv mgh mv= +  2 2 2

B Top 2 (20 m/s) 2(9 8 m/s )(70 m) 42 m/s.v v gh= + = + . =  

EVALUATE:   The result does not depend on the mass of the block. 
 7.51. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the person. 

SET UP:   Point 1 is where he steps off the platform and point 2 is where he is stopped by the cord. Let 
0=y  at point 2. 1 41 0 m.= .y  21

other 2 ,=W kx-  where 11 0 mx = .  is the amount the cord is stretched at 

point 2. The cord does negative work. 
EXECUTE:   1 2 2 0,K K U= = =  so 21

1 2 0− =mgy kx  and 631 N/m.=k  

Now apply F kx=  to the test pulls: 
F kx=  so / 0 602 m.x F k= = .  
EVALUATE:   All his initial gravitational potential energy is taken away by the negative work done by the 
force exerted by the cord, and this amount of energy is stored as elastic potential energy in the stretched cord. 

 7.52. IDENTIFY:   Apply Eq. (7.14) to the motion of the skier from the gate to the bottom of the ramp. 
SET UP:   other 4000 J.W =-  Let 0y =  at the bottom of the ramp. 
EXECUTE:   For the skier to be moving at no more than 30 0 m/s,.  his kinetic energy at the bottom of the 

ramp can be no bigger than 
2 2(85 0 kg)(30 0 m/s) 38 250 J.

2 2
mv ,. .= =  Friction does 4000 J−  of work on 

him during his run, which means his combined U and K at the top of the ramp must be no more than 

38 250 J 4000 J 42,250 J.+ =  ,  His K at the top is 
2 2(85 0 kg)(2 0 m/s) 170 J.

2 2
mv . .= =  His U at the top 
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should thus be no more than 42,250 J 170 J 42,080 J,− =   which gives a height above the bottom of the 

ramp of 2
42,080 J 42,080 J 50.5 m.

(85.0 kg)(9.80 m/s )
= = =h

mg
 

EVALUATE:   In the absence of air resistance, for this h his speed at the bottom of the ramp would be  
31.5 m/s. The work done by air resistance is small compared to the kinetic and potential energies that enter 
into the calculation. 

 7.53. IDENTIFY:   Use the work-energy theorem, Eq. (7.7). Solve for 2K  and then for 2.v  
SET UP:   Let point 1 be at his initial position against the compressed spring and let point 2 be at the end of 
the barrel, as shown in Figure 7.53. Use =F kx  to find the amount the spring is initially compressed by 
the 4400 N force. 

1 1 other 2 2K U W K U+ + = +  
 

 Take 0y =  at his initial position. 

EXECUTE:   1 0,=K  21
2 22K mv=  

other fric= = −W W fs  

other (40 N)(4 0 m) 160 JW = − . = −  

Figure 7.53   
 

1 grav 0,,U =  21
1 el 2 ,=,U kd  where d is the distance the spring is initially compressed. 

F kd=  so 4400 N 4 00 m
1100 N/m

Fd
k

= = = .  

and 21
1 el 2 (1100 N/m)(4 00 m) 8800 J,U = . =  

2
2 grav 2 (60 kg)(9 80 m/s )(2 5 m) 1470 J,,U mgy= = . . =  2 el 0,U =  

Then 1 1 other 2 2K U W K U+ + = +  gives 
21
228800 J 160 J 1470 Jmv− = +  

21
22 7170 Jmv =  and 2

2(7170 J) 15 5 m/s
60 kg

v = = .  

EVALUATE:   Some of the potential energy stored in the compressed spring is taken away by the work done 
by friction. The rest goes partly into gravitational potential energy and partly into kinetic energy. 

 7.54. IDENTIFY:   To be at equilibrium at the bottom, with the spring compressed a distance 0,x  the spring force 
must balance the component of the weight down the ramp plus the largest value of the static friction, or 

0 sin .kx w fθ= +  Apply Eq. (7.14) to the motion down the ramp. 

SET UP:   2 0,K =  21
1 2 ,K mv=  where v is the speed at the top of the ramp. Let 2 0,U =  so 1 sin ,U wL θ=  

where L is the total length traveled down the ramp. 

EXECUTE:   Eq. (7.14) gives 2 2
0

1 1( sin ) .
2 2
kx w f L mvθ= − +  With the given parameters, 21

02 248 Jkx =  and 

3
0 1 10 10  Nkx = . × .  Solving for k gives 2440 N/mk = .  

EVALUATE:   0 0 451 m.x = .  sin 551 N.w θ =  The decrease in gravitational potential energy is only slightly 
larger than the amount of mechanical energy removed by the negative work done by friction. 

21
2 243 J.=mv  The energy stored in the spring is only slightly larger than the initial kinetic energy of the 

crate at the top of the ramp. 
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 7.55. IDENTIFY:   Apply Eq. (7.7) to the system consisting of the two buckets. If we ignore the inertia of the 
pulley we ignore the kinetic energy it has. 
SET UP:   1 1 other 2 2K U W K U+ + = + .  Points 1 and 2 in the motion are sketched in Figure 7.55. 

 

 

Figure 7.55 
 

The tension force does positive work on the 4.0 kg bucket and an equal amount of negative work on the 
12.0 kg bucket, so the net work done by the tension is zero. 
Work is done on the system only by gravity, so other 0W =  and gravU U=  

EXECUTE:   1 0K =  
2 21 1

2 ,2 ,22 2= +A A B BK m v m v  But since the two buckets are connected by a rope they move together and have 

the same speed: ,2 ,2 2.= =A Bv v v  

Thus 2 21
2 2 22 ( ) (8 00 kg) .= + = .A BK m m v v  

2
1 ,1 (12 0 kg)(9 80 m/s )(2 00 m) 235 2 J.= = . . . = .A AU m gy  

2
2 ,2 (4.0 kg)(9.80 m/s )(2.00 m) 78.4 J.= = =B BU m gy  

Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1 2 2U K U= +  
2
2235 2 J (8 00 kg) 78 4 Jv. = . + .  

2
235 2 J 78 4 J 4 4 m/s

8 00 kg
v . − .= = .

.
 

EVALUATE:   The gravitational potential energy decreases and the kinetic energy increases by the same 
amount. We could apply Eq. (7.7) to one bucket, but then we would have to include in otherW  the work 
done on the bucket by the tension T. 

 7.56. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the rocket from the starting point to the 
base of the ramp. otherW  is the work done by the thrust and by friction. 
SET UP:   Let point 1 be at the starting point and let point 2 be at the base of the ramp. 1 0,v =  

2 50 0 m/s.v = .  Let 0y =  at the base and take y+  upward. Then 2 0y =  and 1 sin53 ,y d= °  where d is the 
distance along the ramp from the base to the starting point. Friction does negative work. 
EXECUTE:   1 0,K =  2 0.U =  1 other 2.U W K+ =  other (2000 N) (500 N) (1500 N) .W d d d= − =  

21
22sin53 (1500 N) .mgd d mv° + =   

2 2
2

2
(1500 kg)(50 0 m/s) 142 m.

2[ sin53 1500 N] 2[(1500 kg)(9 80 m/s )sin53 1500 N]
.= = =

° + . ° +
mvd

mg
 

EVALUATE:   The initial height is 1 (142 m)sin53 113 m.y = ° =  An object free-falling from this distance 

attains a speed 12 47 1 m/s.v gy= = .  The rocket attains a greater speed than this because the forward 
thrust is greater than the friction force. 
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 7.57. IDENTIFY:   Apply 1 1 other 2 2K U W K U+ + = +  
SET UP:   1 2 2 0.U U K= = =  other k ,  with  280 ft 85 3 mμ= = − = = .fW W mgs s  

EXECUTE:   (a) The work-energy expression gives 21
1 k2 0.mv mgsμ− =  

1 k2 22 4 m/s 50 mph;v gsμ= = . =   the driver was speeding. 
(b) 15 mph over speed limit so $150 ticket. 
EVALUATE:   The negative work done by friction removes the kinetic energy of the object. 

 7.58. IDENTIFY:   Conservation of energy says the decrease in potential energy equals the gain in kinetic energy. 
SET UP:   Since the two animals are equidistant from the axis, they each have the same speed v. 
EXECUTE:   One mass rises while the other falls, so the net loss of potential energy is 

2(0 500 kg 0 200 kg)(9 80 m/s )(0 400 m) 1 176 J. − . . . = . .  This is the sum of the kinetic energies of the 

animals and is equal to 21
tot2 ,m v  and 2(1 176 J) 1 83 m/s

(0 700 kg)
v .= = . .

.
 

EVALUATE:   The mouse gains both gravitational potential energy and kinetic energy. The rat’s gain in 
kinetic energy is less than its decrease of potential energy, and the energy difference is transferred to the 
mouse. 

 7.59. (a) IDENTIFY and SET UP:   Apply Eq. (7.7) to the motion of the potato. Let point 1 be where the potato is 
released and point 2 be at the lowest point in its motion, as shown in Figure 7.59a. 

1 1 other 2 2K U W K U+ + = +  
 

 1 2.50 my =  

2 0y =  
The tension in the string is at all points in the  
motion perpendicular to the displacement, so 0rW =  
The only force that does work on the potato is gravity,  
so other 0W = .  

Figure 7.59a   
 

EXECUTE:   1 0,=K  21
2 22 ,K mv=  1 1,U mgy=  2 0.U =  Thus 1 2U K= . 21

1 22 ,mgy mv=  which gives 

2
2 12 2(9 80 m/s )(2 50 m) 7 00 m/s.v gy= = . . = .  

EVALUATE:   The speed 2v  is the same as if the potato fell through 2.50 m. 

(b) IDENTIFY:   Apply mΣ =F a  to the potato. The potato moves in an arc of a circle so its acceleration is 

rad ,a  where 2
rad /a v R=  and is directed toward the center of the circle. Solve for one of the forces, the 

tension T in the string. 
SET UP:   The free-body diagram for the potato as it swings through its lowest point is given in Figure 7.59b. 

 

 The acceleration rada  is directed in toward  
the center of the circular path, so at this  
point it is upward. 

Figure 7.59b   
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EXECUTE:   y yF maΣ =  gives rad.T mg ma− =  Solving for T gives 
2
2

rad( ) ,vT m g a m g
R

⎛ ⎞
= + = +⎜ ⎟⎜ ⎟

⎝ ⎠
 where 

the radius R for the circular motion is the length L of the string. It is instructive to use the algebraic 
expression for 2v  from part (a) rather than just putting in the numerical value: 2 12 2 ,v gy gL= =  so 

2
2 2 .v gL=  Then 

2
2 2 3v gLT m g m g mg
L L

⎛ ⎞ ⎛ ⎞= + = + = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 The tension at this point is three times the weight 

of the potato, so 23 3(0 300 kg)(9 80 m/s ) 8 82 N.T mg= = . . = .  
EVALUATE:   The tension is greater than the weight; the acceleration is upward so the net force must be upward. 

 7.60. IDENTIFY:   Eq. (7.14) says other 2 2 1 1( ).W K U K U= + − +  otherW is the work done on the baseball by the 
force exerted by the air. 
SET UP:   .U mgy=  21

2 ,=K mv  where 2 2 2.x yv v v= +  

EXECUTE:   (a) The change in total energy is the work done by the air, 
2 2

other 2 2 1 1 2 1 2
1( ) ( ) ( ) .
2

⎛ ⎞= + − + = − +⎜ ⎟
⎝ ⎠

W K U K U m v v gy  

2 2 2 2
other (0 145 kg)((1/2[(18 6 m/s) (30 0 m/s) (40 0 m/s) ] (9 80 m/s ) 53 6 m)).W = . . − . − . + . .(  

other 80 0 J.W = .-  
(b) Similarly, other 3 3 2 2( ) ( ).W K U K U= + − +  

2 2 2 2
other (0 145 kg)((1/2)[(11 9 m/s) ( 28 7 m/s) (18 6 m/s) ] (9 80 m/s )(53 6 m)).W = . . + − . − . − . .  

other 31 3 JW = . .-  
(c) The ball is moving slower on the way down, and does not go as far (in the x-direction), and so the work 
done by the air is smaller in magnitude. 
EVALUATE:   The initial kinetic energy of the baseball is 21

2 (0 145 kg)(50 0 m/s) 181 J.. . =  For the total 

motion from the ground, up to the maximum height, and back down the total work done by the air is 111 J. 
The ball returns to the ground with 181 J 111 J 70 J− =  of kinetic energy and a speed of 31 m/s, less than 
its initial speed of 50 m/s. 

 7.61. IDENTIFY and SET UP:   There are two situations to compare: stepping off a platform and sliding down a 
pole. Apply the work-energy theorem to each. 
(a) EXECUTE:   Speed at ground if steps off platform at height h: 

1 1 other 2 2K U W K U+ + = +  
21
22 ,mgh mv=  so 2

2 2v gh=  

Motion from top to bottom of pole: (take 0y =  at bottom) 

1 1 other 2 2K U W K U+ + = +  
21
22mgd fd mv− =  

Use 2
2 2v gh=  and get mgd fd mgh− =  

( )fd mg d h= −  
( ) / (1 / )f mg d h d mg h d= − = −  

EVALUATE:   For h d=  this gives 0f =  as it should (friction has no effect). 
For 0,=h  2 0v =  (no motion). The equation for f gives f mg=  in this special case. When f mg=  the 
forces on him cancel and he doesn’t accelerate down the pole, which agrees with 2 0.v =  

(b) EXECUTE:   2(1 / ) (75 kg)(9 80 m/s )(1 1 0 m/2 5 m) 441 N.f mg h d= − = . − . . =  
(c) Take 0y =  at bottom of pole, so 1y d=  and 2 .y y=  

1 1 other 2 2K U W K U+ + = +  



Potential Energy and Energy Conservation   7-23 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

21
20 ( )mgd f d y mv mgy+ − − = +  

21
2 ( ) ( )mv mg d y f d y= − − −  

Using (1 / )f mg h d= −  gives 21
2 ( ) (1 )( )mv mg d y mg h/d d y= − − − −  

21
2 ( / )( )mv mg h d d y= −  and 2 (1 / )v gh y d= −  

EVALUATE:   This gives the correct results for 0y =  and for = .y d  
 7.62. IDENTIFY:   Apply Eq. (7.14) to each stage of the motion. 

SET UP:   Let 0y =  at the bottom of the slope. In part (a), otherW  is the work done by friction. In part (b), 

otherW  is the work done by friction and the air resistance force. In part (c), otherW  is the work done by the 
force exerted by the snowdrift. 
EXECUTE:   (a) The skier’s kinetic energy at the bottom can be found from the potential energy at the top 
minus the work done by friction, 1 (60 0 kg)(9 8 N/kg)(65 0 m) 10,500 J,= − = . . . −fK mgh W  or 

1 38,200 J 10,500 J 27,720 J.= − =K  Then 1
1

2 2(27 720 J) 30 4 m/s.
60 kg

K ,v
m

= = = .  

(b) 2 1 air k air( ) 27,720 J ( )μ= − + = − + .fK K W W mgd f d  

2 27,720 J [(0 2)(588 N)(82 m) (160 N)(82 m)]= − . +K or 2 27,720 J 22,763 J 4957 J.= − =K  Then, 

2
2 2(4957 J) 12 9 m/s

60 kg
Kv
m

= = = .  

(c) Use the Work-Energy Theorem to find the force. ,W K= Δ  / (4957 J)/(2 5 m) 2000 N.F K d= = . =  
EVALUATE:   In each case, otherW  is negative and removes mechanical energy from the system. 

 7.63. IDENTIFY and SET UP:   First apply mΣ =F a  to the skier. 
Find the angle α  where the normal force becomes zero, in terms of the speed 2v  at this point. Then apply 
the work-energy theorem to the motion of the skier to obtain another equation that relates 2v  and .α  Solve 
these two equations for .α  

 

 Let point 2 be where the skier loses contact  
with the snowball, as sketched in Figure 7.63a 
Loses contact implies 0n→ .  

1 ,y R=  2 cosy R α=  

Figure 7.63a   
 

First, analyze the forces on the skier when she is at point 2. The free-body diagram is given in Figure 7.63b. 
For this use coordinates that are in the tangential and radial directions. The skier moves in an arc of a 
circle, so her acceleration is 2

rad / ,a v R=  directed in towards the center of the snowball. 
 

 EXECUTE:   Σ =y yF ma  
2
2cosmg n mv /Rα − =  

But 0n =  so 2
2cosmg mv /Rα =  

2
2 cosv Rg α=  

Figure 7.63b   
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Now use conservation of energy to get another equation relating 2v  to :α  

1 1 other 2 2K U W K U+ + = +  
The only force that does work on the skier is gravity, so other 0.W =  

1 0,K =  21
2 22K mv=  

1 1 ,U mgy mgR= =  2 2 cosU mgy mgR α= =  

Then 21
22 cosmgR mv mgR α= +  

2
2 2 (1 cos )v gR α= −  

Combine this with the Σ =y yF ma  equation: 
cos 2 (1 cos )Rg gRα α= −  

cos 2 2cosα α= −  
3cos 2α =  so cos 2/3α =  and 48 2α = . °  
EVALUATE:   She speeds up and her rada  increases as she loses gravitational potential energy. She loses 
contact when she is going so fast that the radially inward component of her weight isn’t large enough to 
keep her in the circular path. Note that α  where she loses contact does not depend on her mass or on the 
radius of the snowball. 

 7.64. IDENTIFY:   Initially the ball has all kinetic energy, but at its highest point it has kinetic energy and 
potential energy. Since it is thrown upward at an angle, its kinetic energy is not zero at its highest point. 
SET UP:   Apply conservation of energy: f f i i.K U K U+ = +  Let i 0,y =  so f ,y h=  the maximum height. 
At this maximum height, f , 0 =yv  and f , i, , =x xv v  so f i, (15 m/s)(cos60.0 ) 7.5 m/s. = = ° =xv v  Substituting 

into conservation of energy equation gives 2 21 1
i2 2 (7 5 m/s) .= + .mv mgh m  

EXECUTE:   Solve for h: 
2 2 2 2

i
2

(7 5 m/s) (15 m/s) (7 5 m/s) 8 6 m
2 2(9 80 m/s )

− . − .= = = . .
.

vh
g

 

EVALUATE:   If the ball were thrown straight up, its maximum height would be 11.5 m, since all of its 
kinetic energy would be converted to potential energy. But in this case it reaches a lower height because it 
still retains some kinetic energy at its highest point. 

 7.65. IDENTIFY and SET UP:    
 

 Ay R=  
0B Cy y= =  

Figure 7.65   
 

(a) Apply conservation of energy to the motion from B to C: 
other .B B C CK U W K U+ + = +  The motion is described in Figure 7.65. 

EXECUTE:   The only force that does work on the package during this part of the motion is friction, so 
other k k k(cos ) (cos180 )fW W f s mg s mgsφ μ μ= = = ° =-  

21
2 ,B BK mv=  0CK =  

0,BU =  0CU =  
Thus 0B fK W+ =  

21
2 k 0μ− =Bmv mgs  

2 2

2k
(4 80 m/s) 0 392

2 2(9 80 m/s )(3 00 m)
B
gs

μ
μ .= = = .

. .
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EVALUATE:   The negative friction work takes away all the kinetic energy. 
(b) IDENTIFY and SET UP:   Apply conservation of energy to the motion from A to B: 

otherA A B BK U W K U+ + = +  
EXECUTE:   Work is done by gravity and by friction, so other .fW W=  

0,AK =  2 21 1
2 2 (0 200 kg)(4 80 m/s) 2 304 J= = . . = .B BK mv  

2(0 200 kg)(9 80 m/s )(1 60 m) 3 136 J,A AU mgy mgR= = = . . . = .  0BU =  
Thus A f BU W K+ =  

2 304 J 3 136 J 0 83 Jf B AW K U= − = . − . = .-  

EVALUATE:   fW  is negative as expected; the friction force does negative work since it is directed 
opposite to the displacement. 

 7.66. IDENTIFY:   Apply Eq. (7.14) to the initial and final positions of the truck. 
SET UP:   Let 0y =  at the lowest point of the path of the truck. otherW  is the work done by friction. 

r r r cos .f n mgμ μ β= =  

EXECUTE:   Denote the distance the truck moves up the ramp by x. 21
1 02 ,K mv=  1 sin ,U mgL α=  2 0,K =  

2 sinU mgx β=  and other r cos .W mgxμ β=-  From other 2 2 1 1( ) ( ),W K U K U= + − +  and solving for x, 

( )
2

1 0

r r

sin ( /2 ) sin
sin cos sin cos
K mgL v g Lx

mg
α α

β μ β β μ β
+ += = .

+ +
 

EVALUATE:   x increases when 0v  increases and decreases when rμ  increases. 

 7.67. 2,xF x xα β= −-  60 0 N/mα = .  and 218 0 N/mβ = .  
(a) IDENTIFY:   Use Eq. (6.7) to calculate W and then use W U= Δ-  to identify the potential energy 
function ( )U x .  

SET UP:   2
1 2

1
( )

x
F xx x

W U U F x dx= − =  ∫  

Let 1 0x =  and 1 0U = .  Let 2x  be some arbitrary point x, so 2 ( ).U U x=  

EXECUTE:   2 2 2 31 1
2 30 0 0

( ) ( ) ( ) ( ) .α β α β α β= −  = − −  = +  = +∫ ∫ ∫
x x x
xU x F x dx x x dx x x dx x x-  

EVALUATE:   If 0,β =  the spring does obey Hooke’s law, with ,k α=  and our result reduces to 21
2 .kx  

(b) IDENTIFY:   Apply Eq. (7.15) to the motion of the object. 
SET UP:   The system at points 1 and 2 is sketched in Figure 7.67. 

 

 1 1 other 2 2K U W K U+ + = +  
The only force that does work on the object  
is the spring force, so other 0.W =  

Figure 7.67   
 

EXECUTE:   1 0,K =  21
2 22K mv=  

2 3 2 2 31 1 1 1
1 1 1 12 3 2 3( ) (60 0 N/m)(1 00 m) (18 0 N/m )(1 00 m) 36 0 JU U x x xα β= = + = . . + . . = .  

2 3 2 2 31 1 1 1
2 2 2 22 3 2 3( ) (60 0 N/m)(0 500 m) (18 0 N/m )(0 500 m) 8 25 JU U x x xα β= = + = . . + . . = .  
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Thus 21
2236 0 J 8 25 Jmv. = + .  

2
2(36 0 J 8 25 J) 7 85 m/s

0 900 kg
v . − .= = .

.
 

EVALUATE:   The elastic potential energy stored in the spring decreases and the kinetic energy of the 
object increases. 

 7.68. IDENTIFY:   Mechanical energy is conserved on the hill, which gives us the speed of the sled at the top. 
After it leaves the cliff, we must use projectile motion. 
SET UP:   Use conservation of energy to find the speed of the sled at the edge of the cliff. Let i 0y =  so 

f 11 0 my h= = . .  f f i i+ = +K U K U  gives 2 21 1
f i2 2mv mgh mv+ =  or 2

f i 2 .= −v v gh  Then analyze the 

projectile motion of the sled: use the vertical component of motion to find the time t that the sled is in the 
air; then use the horizontal component of the motion with 0=xa  to find the horizontal displacement. 

EXECUTE:   2 2
f (22 5 m/s) 2(9 80 m/s )(11 0 m) 17 1 m/s.= . − . . = .v  21

f i, 2 = +y yy v t a t  gives 

f
2

2 2( 11 0 m) 1 50 s
9 80 m/s
− .= = = . .
.y

yt
a -

 21
f i, 2 = +x xx v t a t  gives f i, (17.1 m/s)(1.50 s) 25.6 m. = = =xx v t  

EVALUATE:   Conservation of energy can be used to find the speed of the sled at any point of the motion 
but does not specify how far the sled travels while it is in the air. 

 7.69. IDENTIFY:   Apply Eq. (7.14) to the motion of the block. 
SET UP:   Let 0y =  at the floor. Let point 1 be the initial position of the block against the compressed 
spring and let point 2 be just before the block strikes the floor. 
EXECUTE:   With 2 10, 0,U K= =  2 1.K U=  2 21 1

22 2 .mv kx mgh= +  Solving for 2,v  

2 2
2

2
(1900 N/m)(0 045 m)2 2(9 80 m/s )(1 20 m) 7 01 m/s.

(0 150 kg)
.= + = + . . = .

.
kxv gh
m

 

EVALUATE:   The potential energy stored in the spring and the initial gravitational potential energy all go 
into the final kinetic energy of the block. 

 7.70. IDENTIFY:   Apply Eq. (7.14). U is the total elastic potential energy of the two springs. 
SET UP:   Call the two points in the motion where Eq. (7.14) is applied A and B to avoid confusion with 
springs 1 and 2, that have force constants 1k and 2.k  At any point in the motion the distance one spring is 
stretched equals the distance the other spring is compressed. Let x+  be to the right. Let point A be the 
initial position of the block, where it is released from rest, so 1 0 150 mAx = + . and 2 0 150 m.Ax = .-  
EXECUTE:   (a) With no friction, other 0.W =  0AK =  and .A B BU K U= +  The maximum speed is when 

0BU = and this is at 1 2 0,B Bx x= =  when both springs are at their natural length. 
2 2 21 1 1

1 1 2 22 2 2 .A A Bk x k x mv+ =  2 2 2
1 2 (0 150 m) ,A Ax x= = .  so 

1 2 2500 N/m 2000 N/m(0 150 m) (0 150 m) 6.00 m/s.
3 00 kg

+ += . = . =
.B

k kv
m

 

(b) At maximum compression of spring 1, spring 2 has its maximum extension and 0.Bv =  Therefore, at 
this point .A BU U=  The distance spring 1 is compressed equals the distance spring 2 is stretched, and vice 

versa: 1 2A Ax x=-  and 1 2 .B Bx x=-  Then A BU U=  gives 2 21 1
1 2 1 1 2 12 2( ) ( )A Bk k x k k x+ = +  and 

1 1 0 150 m.B Ax x= = .- -  The maximum compression of spring 1 is 15.0 cm. 
EVALUATE:   When friction is not present mechanical energy is conserved and is continually transformed 
between kinetic energy of the block and potential energy in the springs. If friction is present, its work 
removes mechanical energy from the system. 



Potential Energy and Energy Conservation   7-27 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 7.71. IDENTIFY:   Apply conservation of energy to relate x and h. Apply Σ = mF a  to relate a and x. 
SET UP:   The first condition, that the maximum height above the release point is h, is expressed as 

21
2 .kx mgh=  The magnitude of the acceleration is largest when the spring is compressed to a distance x; at 

this point the net upward force is ,kx mg ma− =  so the second condition is expressed as ( / )( ).x m k g a= +  
EXECUTE:   (a) Substituting the second expression into the first gives  

2 2
21 ( )( ) , or .

2 2
+⎛ ⎞ + = =⎜ ⎟

⎝ ⎠

m m g ak g a mgh k
k gh

 

(b) Substituting this into the expression for x gives 2 .ghx
g a

=
+

 

EVALUATE:   When 0,→a  our results become 
2
mgk
h

=  and 2 .x h=  The initial spring force is =kx mg  

and the net upward force approaches zero. But 21
2 kx mgh=  and sufficient potential energy is stored in the 

spring to move the mass to height h. 
 7.72. IDENTIFY:   At equilibrium the upward spring force equals the weight mg of the object. Apply conservation 

of energy to the motion of the fish. 
SET UP:   The distance that the mass descends equals the distance the spring is stretched. 1 2 0,K K= =  so 

1 2(gravitational) (spring)U U=  
EXECUTE:   Following the hint, the force constant k is found from ,mg kd=  or / .=k mg d  When the fish 
falls from rest, its gravitational potential energy decreases by mgy; this becomes the potential energy of the 

spring, which is 2 21 1
2 2 ( / ) .=ky mg d y  Equating these, 21 , or 2 .

2
= =mg y mgy y d

d
 

EVALUATE:   At its lowest point the fish is not in equilibrium. The upward spring force at this point is 
2 ,ky kd=  and this is equal to twice the weight. At this point the net force is mg, upward, and the fish has 

an upward acceleration equal to g. 
 7.73. IDENTIFY:   Only conservative forces (gravity and the spring) act on the fish, so its mechanical energy is 

conserved. 
SET UP:   Energy conservation tells us 1 1 other 2 2,K U W K U+ + = +  where other 0.W = ,gU mgy=  

21
2 ,=K mv  and 21

2 .=springU ky  

EXECUTE:   (a) 1 1 other 2 2.K U W K U+ + = +  Let y be the distance the fish has descended, so 0 0500 m.y = .  

1 0,K =  other 0,W =  1 ,U mgy=  2
2 2

1 ,
2

=K mv  and 2
2

1 .
2

U ky=  Solving for K2 gives 

2 2 2
2 1 2

1 1(3 00 kg)(9 8 m/s )(0 0500 m) (900 N/m)(0 0500 m)
2 2

K U U mgy ky= − = − = . . . − .

2 1 47 J 1 125 J 0 345 J.K = . − . = .  Solving for v2 gives 2
2

2 2(0 345 J) 0 480 m/s.
3 00 kg

Kv
m

.= = = .
.

 

(b) The maximum speed is when 2K  is maximum, which is when 2/  0.dK dy =  Using 2
2

1
2

K mgy ky= −  

gives 2 0.dK mg ky
dy

= − =  Solving for y gives 
2(3 00 kg)(9 8 m/s ) 0 03267 m.

900 N/m
mgy
k

. .= = = .  At this y, 

2 2
2

1(3 00 kg)(9 8 m/s )(0 03267 m) (900 N/m)(0 03267 m) .
2

K = . . . − .  2 0 9604 J 0 4803 J 0 4801 J,K = . − . = .  

so 2
2

2 0 566 m/s.Kv
m

= = .  

EVALUATE:   The speed in part (b) is greater than the speed in part (a), as it should be since it is the 
maximum speed. 
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 7.74. IDENTIFY:   The spring obeys Hooke’s law. Gravity and the spring provide the vertical forces on the brick. 
The mechanical energy of the system is conserved. 
SET UP:   Use f f i i.K U K U+ = +  In part (a), setting f 0,y =  we have i ,y x=  the amount the spring will 

stretch. Also, since i f 0,K K= =  21
2 .kx mgx=  In part (b), i ,y h x= +  where 1 0 m.h = .  

EXECUTE:   (a) 
22 2(3 0 kg)(9 80 m/s ) 0 039 m 3 9 cm.

1500 N/m
mgx
k

. .= = = . = .  

(b) 21
2 ( ),kx mg h x= +  2 2 2 0kx mgx mgh− − =  and 21 1mg hkx

k mg
⎛ ⎞

= ± + .⎜ ⎟⎜ ⎟
⎝ ⎠

 Since x must be positive, we 

have 
2

2
2 (3 0 kg)(9 80 m/s ) 2(1 0 m)(1500 N/m)1 1 1 1 0 22 m 22 cm

1500 N/m 3 0 kg(9 80 m/s )
mg hkx
k mg

⎛ ⎞⎛ ⎞ . . .= + + = + + = . =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟. .⎝ ⎠ ⎝ ⎠
 

EVALUATE:   In part (b) there is additional initial energy (from gravity), so the spring is stretched more. 
 7.75. (a) IDENTIFY and SET UP:   Apply otherA A B BK U W K U+ + = +  to the motion from A to B. 

EXECUTE:   0,AK =  21
2B BK mv=  

0,AU =  21
el 2 ,B ,B BU U kx= =  where 0 25 mBx = .  

other F BW W Fx= =  

Thus 2 21 1
2 2 .B B BFx mv kx= +  (The work done by F goes partly to the potential energy of the stretched spring 

and partly to the kinetic energy of the block.) 
(20 0 N)(0 25 m) 5 0 JBFx = . . = .  and 2 21 1

2 2 (40 0 N/m)(0 25 m) 1 25 JBkx = . . = .  

Thus 21
25 0 J 1 25 JBmv. = + .  and 2(3 75 J) 3 87 m/s

0 500 kgBv
.= = .

.
 

(b) IDENTIFY:   Apply Eq. (7.15) to the motion of the block. Let point C be where the block is closest to 
the wall. When the block is at point C the spring is compressed an amount ,Cx  so the block is 

0 60 m Cx. −  from the wall, and the distance between B and C is .B Cx x+  
SET UP:   The motion from A to B to C is described in Figure 7.75. 

 

 otherB B C CK U W K U+ + = +  
EXECUTE:   other 0W =  

21
2 5 0 J 1 25 J 3 75 JB BK mv= = . − . = .  

           (from part (a)) 
21

2 1 25 JB BU kx= = .  

0CK =  (instantaneously at rest at point 
               closest to wall) 

21
2C CU k x=  

Figure 7.75   
 

Thus 21
23 75 J 1 25 J Ck x. + . =  

2(5 0 J) 0 50 m
40 0 N/mCx

.= = .
.

 

The distance of the block from the wall is 0 60 m 0 50 m 0 10 m. − . = . .  
EVALUATE:   The work (20 0 N)(0 25 m) 5 0 J. . = .  done by F puts 5.0 J of mechanical energy into the 
system. No mechanical energy is taken away by friction, so the total energy at points B and C is 5.0 J. 
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 7.76. IDENTIFY:   Apply Eq. (7.14) to the motion of the student. 
SET UP:   Let 0 0 18 m,x = .  1 0 71 m.x = .  The spring constants (assumed identical) are then known in terms 
of the unknown weight w, 04 .kx w=  Let 0y =  at the initial position of the student. 
EXECUTE:   (a) The speed of the brother at a given height h above the point of maximum compression is 

then found from 2 21 1
12 2(4 ) ,

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

wk x v mgh
g

 or 
2

2 2 1
1

0

(4 ) 2 2 .k g xv x gh g h
w x

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 Therefore, 

2 2(9 80 m/s )((0 71 m) /(0 18 m) 2(0 90 m)) 3 13 m/s,v = . . . − . = .  or 3 1 m/s.  to two figures. 

(b) Setting 0v =  and solving for h, 
2 2
1 1

0

2 1 40 m,
2

kx xh
mg x

= = = . or 1.4 m to two figures. 

(c) No; the distance 0x  will be different, and the ratio 
22 2

1 0
0

0 0 0

( 0 53 m) 0 53 m1x x x
x x x

⎛ ⎞+ . .= = +⎜ ⎟
⎝ ⎠

 will be 

different. Note that on a planet with lower g, 0x  will be smaller and h will be larger. 
EVALUATE:   We are able to solve the problem without knowing either the mass of the student or the force 
constant of the spring. 

 7.77. IDENTIFY:   We can apply Newton’s second law to the block. The only forces acting on the block are 
gravity downward and the normal force from the track pointing toward the center of the circle. The 
mechanical energy of the block is conserved since only gravity does work on it. The normal force does no 
work since it is perpendicular to the displacement of the block. The target variable is the normal force at 
the top of the track. 

SET UP:   For circular motion 
2

.Σ = vF m
R

 Energy conservation tells us that other ,+ + = +A A B BK U W K U  

where 21
g 2other = 0.  and .= =W U mgy K mv  

EXECUTE:   Let point A be at the bottom of the path and point B be at the top of the path. At the bottom of 

the path,
2

A
vn mg m
R

− =  (from Newton’s second law). 

0 800 m( ) (3 40 N 0 49 N) 6 82 m/s.
0 0500 kgA A

Rv n mg
m

.= − = . − . = .
.

 Use energy conservation to find the speed 

at point B. other ,A A B BK U W K U+ + = +  giving 2 21 1
2 2 (2 ).= +A Bmv mv mg R  Solving for Bv  gives 

2 2 24 (6 82 m/s) 4(0 800 M)(9 8 m/s ) 3 89 m/s.B Av v Rg= − = . − . . = .  Then at point B, Newton’s second law 

gives 
2

.BB
vn mg m
R

+ =  Solving for Bn  gives 

2 2
2(3 89 m/s)(0 0500 kg) 9 8 m/s 0 456 N.

0 800 m
⎛ ⎞.= − = . − . = .⎜ ⎟⎜ ⎟.⎝ ⎠

B
B

vn m mg
R

 

EVALUATE:   The normal force at the top is considerably less than it is at the bottom for two reasons: the 
block is moving slower at the top and the downward force of gravity at the top aids the normal force in 
keeping the block moving in a circle.  

 7.78. IDENTIFY:   Applying Newton’s second law, we can use the known normal forces to find the speeds of the 
block at the top and bottom of the circle. We can then use energy conservation to find the work done by 
friction, which is the target variable. 

SET UP:   For circular motion 
2

.Σ = vF m
R

 Energy conservation tells us that other ,A A B BK U W K U+ + = +  

where otherW  is the work done by friction. gU mgy=  and 21
2 .=K mv  
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EXECUTE:   Use the given values for the normal force to find the block’s speed at points A and B. At point A, 

Newton’s second law gives 
2

.AA
vn mg m
R

− =  So 

0 500 m( ) (3 95 N 0 392 N) 6 669 m/s.
0 0400 kgA A

Rv n mg
m

.= − = . − . = .
.

 Similarly at point B, 
2

.BB
vn mg m
R

+ =  

Solving for Bv  gives 0 500 m( ) (0 680 N 0 392 N) 3 660 m/s.
0 0400 kgB B

Rv n mg
m

.= + = . + . = .
.

 Now apply the 

work-energy theorem to find the work done by friction. other .A A B BK U W K U+ + = +  

other .B B AW K U K= + −  

2 2 2
other

1 1(0 40 kg)(3 66 m/s) (0 04 kg)(9 8 m/s )(1 0 m) (0 04 kg)(6 669 m/s) .
2 2

W = . . + . . . − . .  

other 0 2679 J 0 392 J 0 8895 J 0 230 J.W = . + . − . = .-  
EVALUATE:   The work done by friction is negative, as it should be. This work is equal to the loss of 
mechanical energy between the top and bottom of the circle. 

 7.79. IDENTIFY:   .U mgh=  Use 150 mh =  for all the water that passes through the dam. 
SET UP:   m Vρ=  and V A h= Δ  is the volume of water in a height hΔ  of water in the lake. 
EXECUTE:   (a) Stored energy ( ) (1 m) .mgh V gh A ghρ ρ= = =  

3 6 2 2 12stored energy (1000 kg/m )(3 0 10  m )(1 m)(9 8 m/s )(150 m) 4 4 10  J.= . × . = . ×  
(b) 90% of the stored energy is converted to electrical energy, so (0 90)( ) 1000 kWh.mgh. =  

(0 90) 1000 kWh.Vghρ. =  3 3
3 2

(1000 kWh)((3600 s)/(1 h)) 2 7 10  m .
(0 90)(1000 kg/m )(150 m)(9 8 m/s )

= = . ×
. .

V  

Change in level of the lake: water.A h VΔ =  
3 3

4
6 2

2 7 10 m 9 0 10 m.
3 0 10 m

−. ×Δ = = = . ×
. ×

Vh
A

 

EVALUATE:   hΔ  is much less than 150 m, so using 150 mh =  for all the water that passed through the 
dam was a very good approximation. 

 7.80. IDENTIFY and SET UP:   The potential energy of a horizontal layer of thickness dy, area A, and height y is 
( ) .=dU dm gy  Let ρ  be the density of water. 

EXECUTE:   ,dm dV A dyρ ρ=  =   so .dU Agy dyρ=   
The total potential energy U is 

21
20 0

.ρ ρ= =  =∫ ∫
h h

U dU Ag y dy Agh  

6 23 0 10  mA = . ×  and 150 m,h =  so 14 73 3 10  J 9 2 10  kWhU = . × = . ×  
EVALUATE:   The volume is Ah and the mass of water is .V Ahρ ρ=  The average depth is av /2,h h=  so 

av.U mgh=  
 7.81. IDENTIFY:   Apply Eq. (7.15) to the motion of the block. 

SET UP:   The motion from A to B is described in Figure 7.81. 
 

 

Figure 7.81 



Potential Energy and Energy Conservation   7-31 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

The normal force is cos ,n mg θ=  so k k k cos .μ μ θ= =f n mg  
0;Ay =  (6.00 m)sin30 0 3 00 mBy = . ° = .  

otherA A B BK U W K U+ + = +  
EXECUTE:   Work is done by gravity, by the spring force, and by friction, so other fW W=  and 

el gravU U U= +  

0,AK =  2 21 1
2 2 (1 50 kg)(7 00 m/s) 36 75 JB BK mv= = . . = .  

el, grav, el, ,= + =A A A AU U U U  since grav, 0=AU  
2

el, grav, 0 (1.50 kg)(9.80 m/s )(3.00 m) 44.1 J= + = + = =B B B BU U U mgy  

other k k k( cos ) cos (cos180 ) cosfW W f s mg s mg sφ μ θ μ θ= = = ° =-  
2

other (0 50)(1 50 kg)(9 80 m/s )(cos30 0 )(6 00 m) 38 19 JW = . . . . ° . = .- -  
Thus el, 38.19 J 36.75 J 44.10 J− = +AU  

el, 38.19 J 36.75 J 44.10 J 119 J= + + =AU  

EVALUATE:   elU  must always be positive. Part of the energy initially stored in the spring was taken away 
by friction work; the rest went partly into kinetic energy and partly into an increase in gravitational 
potential energy. 

 7.82. IDENTIFY:   Only gravity does work, so apply Eq. (7.4). Use mΣ =F a  to calculate the tension. 
SET UP:   Let 0y =  at the bottom of the arc. Let point 1 be when the string makes a 45°  angle with the 
vertical and point 2 be where the string is vertical. The rock moves in an arc of a circle, so it has radial 
acceleration 2

rad /=a v r  
EXECUTE:   (a) At the top of the swing, when the kinetic energy is zero, the potential energy (with respect 
to the bottom of the circular arc) is (1 cos ),mgl θ−   where l is the length of the string and θ  is the angle the 
string makes with the vertical. At the bottom of the swing, this potential energy has become kinetic energy, 

so 21
2(1 cos ) ,θ− =mgl mv  or 22 (1 cos ) 2(9 80 m/s )(0 80 m)(1 cos45 ) 2 1 m/s.v gl θ= − = . .  − ° = .  

(b) At 45°  from the vertical, the speed is zero, and there is no radial acceleration; the tension is equal to 
the radial component of the weight, or 2cos (0 12 kg)(9 80 m/s ) cos 45 0 83 N.mg θ = . . ° = .  
(c) At the bottom of the circle, the tension is the sum of the weight and the mass times the radial 
acceleration, 

2
2 / (1 2(1 cos45 )) 1 9 Nmg mv l mg+ = + − ° = .  

EVALUATE:   When the string passes through the vertical, the tension is greater than the weight because the 
acceleration is upward. 

 7.83. 2 ˆ,xy= αF j-  32 50 N/mα = .  

IDENTIFY:   F  is not constant so use Eq. (6.14) to calculate W. F  must be evaluated along the path. 
(a) SET UP:   The path is sketched in Figure 7.83a. 

 

 ˆ ˆd dx dy= +l i j  
2d xy dyα⋅ =  F l -  

On the path, x y=  so 3d y dyα⋅ =  F l -  

Figure 7.83a   
 

EXECUTE:   
2 3 4 4 42 2

2 11 1 1
( ) ( /4) ( /4)( )α α α⎛ ⎞= ⋅ = −  = = −⎜ ⎟

⎝ ⎠
∫ ∫ ∫

y y

y y
W d y dy y y yF l - -  

1 0,y =  2 3 00 m,y = .  so 3 41
4 (2 50 N/m )(3 00 m) 50 6 JW = . . = .- -  
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(b) SET UP:   The path is sketched in Figure 7.83b. 
 

 
Figure 7.83b 

 

For the displacement from point 1 to point 2, ˆ,d dx=l i  so 0d⋅ =F l  and 0.W =  (The force is 
perpendicular to the displacement at each point along the path, so 0.)=W  

For the displacement from point 2 to point 3, ˆ,d dy=l j  so 2 .d xy dyα⋅ =  F l -  On this path, 3 00 m,x = .  so 

3 2 2 2(2 50 N/m )(3 00 m) (7 50 N/m ) .d y dy y dy⋅ = . .  = .  F l - -  

EXECUTE:   
3 2 2 2 3 313

3 232 2
(7.50 N/m ) (7.50 N/m ) ( )= ⋅ =  = −∫ ∫

y

y
W d y dy y yF l - -  

( )2 31
3(7 50 N/m ) (3 00 m) 67 5 JW = . . = .- -  

(c) EVALUATE:   For these two paths between the same starting and ending points the work is different, so 
the force is nonconservative. 

 7.84. IDENTIFY:   Calculate the work W done by this force. If the force is conservative, the work is path independent. 

SET UP:   2

1
.

P

P
W d= ⋅∫ F l  

EXECUTE:   (a) 22 2

1 1
.

P P
yP P

W F dy C y dy= =∫ ∫  W doesn't depend on x, so it is the same for all paths between 

1P  and 2 .P  The force is conservative. 

(b) 22 2

1 1
.

P P
xP P

W F dx C y dx= =∫ ∫  W will be different for paths between points 1P  and 2P  for which y has 

different values. For example, if y has the constant value 0y  along the path, then 2 10 ( ).W Cy x x= −   

W depends on the value of 0 .y  The force is not conservative. 

EVALUATE:   2 ˆCy=F j  has the potential energy function 
3

( ) .
3
CyU y =-  We cannot find a potential 

energy function for 2ˆ.Cy=F i  

 7.85. IDENTIFY:   Use 2

1

P

P
W d= ⋅∫ F l  to calculate W for each segment of the path. 

SET UP:   xd F dx xy dxα⋅ = =  F l  
EXECUTE:   (a) The path is sketched in Figure 7.85. 
(b) (1): 0x =  along this leg, so 0=F  and 0.W =  (2): Along this leg, 1 50 m,y = .  so 

(3 00 N/m) ,d xdx⋅ = .F l  and 2(1 50 N/m)((1 50 m) 0) 3 38 JW = . . − = .  (3) 0,d⋅ =F l  so 0W =  (4) 0,y =  

so 0=F  and 0.W =  The work done in moving around the closed path is 3.38 J. 
(c) The work done in moving around a closed path is not zero, and the force is not conservative. 
EVALUATE:   There is no potential energy function for this force. 
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Figure 7.85 

 

 7.86. IDENTIFY:   Use Eq. (7.16) to relate xF  and ( ).U x  The equilibrium is stable where ( )U x  is a local 
minimum and the equilibrium is unstable where ( )U x  is a local maximum. 
SET UP:   /dU dx  is the slope of the graph of U versus x. ,K E U= −  so K is a maximum when U is a 
minimum. The maximum x is where .E U=  
EXECUTE:   (a) The slope of the U vs. x curve is negative at point A, so xF  is positive (Eq. (7.16)). 
(b) The slope of the curve at point B is positive, so the force is negative. 
(c) The kinetic energy is a maximum when the potential energy is a minimum, and that figures to be at 
around 0.75 m. 
(d) The curve at point C looks pretty close to flat, so the force is zero. 
(e) The object had zero kinetic energy at point A, and in order to reach a point with more potential energy 
than ( ),U A  the kinetic energy would need to be negative. Kinetic energy is never negative, so the object 
can never be at any point where the potential energy is larger than ( ).U A  On the graph, that looks to be at 
about 2.2 m. 
(f) The point of minimum potential (found in part (c)) is a stable point, as is the relative minimum near 1.9 m. 
(g) The only potential maximum, and hence the only point of unstable equilibrium, is at point C. 
EVALUATE:   If E is less than U at point C, the particle is trapped in one or the other of the potential 
"wells" and cannot move from one allowed region of x to the other. 

 7.87. IDENTIFY:   K E U= −  determines ( ).v x  
SET UP:   v is a maximum when U is a minimum and v is a minimum when U is a maximum. 

/ .xF dU dx=-  The extreme values of x are where ( ).E U x=  
EXECUTE:   (a) Eliminating β  in favor of α  and 0 0( / ),β α=x x  

22
0 0 0

2 2 2 2
00 0

( ) .x x xU x
x x x x xx x x x

α β α α α ⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − = −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

20
0

( ) (1 1) 0.U x
x
α⎛ ⎞

⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

 ( )U x  is positive for 0x x<  and negative for 0x x>  (α  and β  must be taken 

as positive). The graph of ( )U x  is sketched in Figure 7.87a. 

(b) 
2

0 0
2
0

2 2( ) .
x x

v x U
m x xmx

α ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
-  The proton moves in the positive x-direction, speeding up 

until it reaches a maximum speed (see part (c)), and then slows down, although it never stops. The minus 
sign in the square root in the expression for ( )v x  indicates that the particle will be found only in the region 
where 0,U <  that is, 0.x x>  The graph of ( )v x  is sketched in Figure 7.87b. 
(c) The maximum speed corresponds to the maximum kinetic energy, and hence the minimum potential 

energy. This minimum occurs when 0,=dU
dx

 or 
3 2

0 0

0

3 2 0,α ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

x xdU
dx x x x

 

which has the solution 02 .x x=  20
0

(2 ) ,
4

U x
x
α=-  so 2

0

.
2

v
mx
α=  
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(d) The maximum speed occurs at a point where = 0,dU
dx

 and from Eq. (7.15), the force at this point  

is zero. 

(e) 1 03 ,x x=  and 20
0

2(3 ) .
9

U x
x
α= −  

2 2
0 0 0 0

2 2 21
0 0 0

2 2 2 2 2( ) ( ( ) ( )) .
9 9

x xx xv x U x U x x xm m x xx x mx
α α α⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟= − = − − = − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

-  

The particle is confined to the region where 1( ) ( ).U x U x<  The maximum speed still occurs at 02 ,x x=  

but now the particle will oscillate between 1x  and some minimum value (see part (f)). 

(f) Note that 1( ) ( )U x U x−  can be written as 

2
0 0 0 0

2 2
0 0

2 1 2 ,
9 3 3

x x x x
x x x xx x

α α⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥− + = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦
 

which is zero (and hence the kinetic energy is zero) at 0 13= =x x x  and 3
2 0 .x x=  Thus, when the particle 

is released from 0 ,x  it goes on to infinity, and doesn’t reach any maximum distance. When released from 

1 ,x  it oscillates between 3
2 0x  and 03 .x  

EVALUATE:   In each case the proton is released from rest and ( ),iE U x=  where ix  is the point where it 

is released. When 0ix x=  the total energy is zero. When 1ix x=  the total energy is negative. ( ) 0U x →  

as ,x→ ∞  so for this case the proton can't reach x→ ∞  and the maximum x it can have is limited. 
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