POTENTIAL ENERGY AND ENERGY CONSERVATION

7.1.  IDENTIFY: Uy, =mgy s0 AU, =mg(y, — )
SETUP: +y is upward.

EXECUTE: (a) AU = (75 kg)(9.80 m/s*)(2400 m —1500 m) =+6.6x10° J
(b) AU = (75 kg)(9.80 m/s>)(1350 m —2400 m)=—7.7x10° J

EVALUATE: U, increases when the altitude of the object increases.

7.2.  IDENTIFY: The change in height of a jumper causes a change in their potential energy.
SETUP: Use AU,.,, =mg(ys — ;).

grav

EXECUTE: AU, = (72 kg)(9.80 m/s?)(0.60 m) =420 J.

grav
EVALUATE: This gravitational potential energy comes from elastic potential energy stored in the jumper’s
tensed muscles.
7.3. IDENTIFY: Use the free-body diagram for the bag and Newton's first law to find the force the worker

applies. Since the bag starts and ends at rest, K, —K; =0 and W, =0.

SET UP: A sketch showing the initial and final positions of the bag is given in Figure 7.3a. sing = i(s)—m
Sm

and ¢ =34.85°. The free-body diagram is given in Figure 7.3b. F is the horizontal force applied by the

worker. In the calculation of U,,,, take +y upward and y =0 at the initial position of the bag.

grav
EXECUTE: (a) XF, =0 gives T'cos¢ =mg and XF, =0 gives I =Tsing. Combining these equations to
eliminate T gives F' =mgtan¢g = (120 kg)(9.80 m/sz)tan 34.85°=820 N.

(b) (i) The tension in the rope is radial and the displacement is tangential so there is no component of 7 in
the direction of the displacement during the motion and the tension in the rope does no work.

(i) Wi =0 50 Wyorker = Weray =Ugrav.2 ~Ugrava = mg (v, = 1) = (120 kg)(9.80 m/s?)(0.6277 m) = 740 J.

worker grav —
EVALUATE: The force applied by the worker varies during the motion of the bag and it would be difficult
to calculate W, ., directly.

2872 m

Tsindy

0.6277 m

L] ng

(a) (b)
Figure 7.3
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7.4.

7.5.

7.6.

1.7.

IDENTIFY: The energy from the food goes into the increased gravitational potential energy of the hiker.

We must convert food calories to joules.

SET UP: The change in gravitational potential energy is AU,,, = mg (y¢ — y;), while the increase in

kinetic energy is negligible. Set the food energy, expressed in joules, equal to the mechanical energy

developed.

EXECUTE: (a) The food energy equals mg(y; —»;), so

_ (140 food calories)(4186 J/1 food calorie)
(65 kg)(9.80 m/s?)

(b) The mechanical energy would be 20% of the results of part (a), so Ay =(0.20)(920 m) =180 m.

EVALUATE: Since only 20% of the food calories go into mechanical energy, the hiker needs much less of
climb to turn off the calories in the bar.
IDENTIFY and SET UP: Use energy methods. Points 1 and 2 are shown in Figure 7.5.

(a) K| +U; +W o =K, +U,. Solve for K, and then use K, =%mv§ to obtain v,.

=920 m.

Ye =N

A ol W er =0 (The only force on the ball while
53.1° ¥ it is in the air is gravity.)

\ —1..2. —1,..72
Kl —EmVl N K2 —EmVZ

220m

\ U =mgy, »=220m

for our choice of coordinates.

\
l 5 U, =mgy, =0, since y, =0
.-\

Figure 7.5

12 1,2
EXECUTE: S mvi +mgy, =5mv;

vy =2 +2gy =+/(12.0 m/s)® +2(9.80 m/s?)(22.0 m) = 24.0 m/s
EVALUATE: The projection angle of 53.1° doesn’t enter into the calculation. The kinetic energy depends

only on the magnitude of the velocity; it is independent of the direction of the velocity.

(b) Nothing changes in the calculation. The expression derived in part (a) for v, is independent of the
angle, so v, =24.0 m/s, the same as in part (a).

(c¢) The ball travels a shorter distance in part (b), so in that case air resistance will have less effect.
IDENTIFY: The normal force does no work, so only gravity does work and Eq. (7.4) applies.

SET UP: K =0. The crate’s initial point is at a vertical height of d sino above the bottom of the ramp.

=K. mgdsina:lmvg

EXECUTE: (a) y, =0, y =dsina. Kj+Ugyy,, =K, +U 3

grav,
and v, =./2gdsina.

() » =0, y,=-dsina. K;+U,

grav,l

and v, =/2gdsine, the same as in part (a).
(¢) The normal force is perpendicular to the displacement and does no work.

EVALUATE: When we use U,,,, =mgy we can take any pointas y =0 but we must take +y to be

2 glves Ugrav,l

=Ky +Ugpyy gives 0= Ky + Uy . 0=Lmv3 +(-mgdsinar)

upward.
IDENTIFY: The take-off kinetic energy of the flea goes into gravitational potential energy.
SETUP: Use K;+U;=K;+U;. Let y;=0 and y; =/ and note that U; =0 while K; =0 at the

maximum height. Consequently, conservation of energy becomes mgh = %mviz.

EXECUTE: (a) v; = /2gh =+/2(9.80 m/s>)(0.20 m) =2.0 m/s.
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(b) K, = mgh = (0.50 x 10 kg)(9.80 m/s*)(0.20 m) =9.8x 107’ J. The kinetic energy per kilogram is

-7
K 98xX10 T )y,

m  0.50x10 kg

2.0m

2.0x107m

(c¢) The human can jump to a height of &, = A Ulj =(0.20 m)(
£

j =200 m. To attain this

height, he would require a takeoff speed of: v, =/2gh = \/2(9.80 m/sz)(200 m) =63 m/s.

(d) The human’s kinetic energy per kilogram is K =gh=(9.80 1r1/s2)(0.60 m) =5.9 J/kg.
m

(e) EVALUATE: The flea stores the energy in its tensed legs.

7.8.  IDENTIFY and SET UP: Apply Eq. (7.7) and consider how each term depends on the mass.
EXECUTE: The speed is v and the kinetic energy is 4K. The work done by friction is proportional to the
normal force, and hence to the mass, and so each term in Eq. (7.7) is proportional to the total mass of the
crate, and the speed at the bottom is the same for any mass. The kinetic energy is proportional to the mass,
and for the same speed but four times the mass, the kinetic energy is quadrupled.
EVALUATE: The same result is obtained if we apply ©F =ma to the motion. Each force is proportional
to m and m divides out, so « is independent of m.

7.9. IDENTIFY: W, =Ky —K,. The forces on the rock are gravity, the normal force and friction.
SETUP: Let y=0 atpoint B and let +y be upward. y, =R =0.50 m. The work done by friction is

negative; W, =-0.22J. K, =0. The free-body diagram for the rock at point B is given in Figure 7.9. The
acceleration of the rock at this point is a4 = v?/R, upward.

EXECUTE: (a) (i) The normal force is perpendicular to the displacement and does zero work.
(ii) Wy =U, ~Ugray,5 =mgy 4 =(0.20 kg)(9.80 m/s?)(0.50 m)=0.98J.

grav,4
(b) Wit =W, + W + Wy, =0+(=0221)+0.98 T =0.76 I. W, =Kp—K 4 gives Tmvy =1,,.

v =\/2Wt°t = [2OT6D) 5 g s,
B m 0.20 ke

(¢) Gravity is constant and equal to mg. n is not constant; it is zero at 4 and not zero at B. Therefore,
Jfx = tyn is also not constant.

(d) XF), =ma, applied to Figure 7.9 gives n—mg =ma,,y.

2 2
n= m[g +%j =(0.20 kg)[9.80 m/s’ +[20'85ﬂ] =5.1N.

Om

EVALUATE: In the absence of friction, the speed of the rock at point B would be /2gR =3.1 m/s. As the
rock slides through point B, the normal force is greater than the weight mg =2.0 N of the rock.

” f g

mg

Figure 7.9
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7.10. IDENTIFY: The potential energy is transformed into kinetic energy which is then imparted to the bone.
SET Up: The initial gravitational potential energy must be absorbed by the leg bones. U; = mgh.

EXECUTE: (a) mgh =2(2001]), so h= 4007 =0.68 m =68 cm.

(60 kg)(9.80 m/s?)

(b) EVALUATE: They flex when they land and their joints and muscles absorb most of the energy.
(c) EVALUATE: Their bones are more fragile so can absorb less energy without breaking and their
muscles and joints are weaker and less flexible and therefore less able to absorb energy.
7.11.  IDENTIFY: Apply Eq. (7.7) to the motion of the car.
SETUP: Take y =0 at point 4. Let point 1 be 4 and point 2 be B.
Kl + Ul + Wother = K2 + U2
EXECUTE: U, =0, U, =mg(2R)=28,224), Wy =Wy

Ky =1m=37,5001, K,=1m3 =3840]

The work-energy relation then gives W, =K, +U, — K, =-5400 J.
EVALUATE: Friction does negative work. The final mechanical energy (K, +U, =32,064 J) is less than
the initial mechanical energy (K, +U; =37,500 J) because of the energy removed by friction work.
7.12.  IDENTIFY: Only gravity does work, so apply Eq. (7.5).
SETUP: Vv =0, so %mv% =mg(y; — )

EXECUTE: Tarzan is lower than his original height by a distance y; —y, =/(cos30°—co0s45°) so his

speed is v= \/Zgl(cos30° —c0s45°) =7.9 m/s, a bit quick for conversation.
EVALUATE: The result is independent of Tarzan’s mass.

7.13. 3 /,\ y,=0

8.00 m ¥, =(8.00 m)sin36.9°
// B
Vo = 80 m
F

)

Figure 7.13a

(a) IDENTIFY and SET UP:  F is constant so Eq. (6.2) can be used. The situation is sketched in
Figure 7.13a.

EXECUTE: Wy =(Fcos@)s = (110 N)(cos0°)(8.00 m)=8801J

EVALUATE: F is in the direction of the displacement and does positive work.

(b) IDENTIFY and SET UP: Calculate W using Eq. (6.2) but first must calculate the friction force. Use the free-
body diagram for the oven sketched in Figure 7.13b to calculate the normal force #; then the friction force can
be calculated from f, = 4 n. For this calculation use coordinates parallel and perpendicular to the incline.

EXECUTE: XF), =ma,
n—mgcos36.9°=0
n=mgcos36.9°

Jx = th = iy mg cos36.9°

£ =(0.25)(10.0 kg)(9.80 m/s)c0s36.9°=19.6 N

mg cosa

Figure 7.13b
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Wp =(fxcos@)s =(19.6 N)(cos180°)(8.00 m) =157 J

EVALUATE: Friction does negative work.

(c) IDENTIFY and SET UP: U =mgy; take y =0 at the bottom of the ramp.
EXECUTE: AU =U, -U; =mg(y, —y)=(10.0 kg)(9.80 m/s?)(4.80 m—0) =470 J

EVALUATE: The object moves upward and U increases.
(d) IDENTIFY and SET UP: Use Eq. (7.7). Solve for AK.

EXECUTE: K| +U;+W o =K, +U,

AR =Ky =K =U; =Uj + Wother

AK = Wother -AU

Wother =Wp +W; =880 -157J=723]

AU =4701]

Thus AK =7231-470J=253].

EVALUATE: W, is positive. Some of W, .. goes to increasing U and the rest goes to increasing K.

(e) IDENTIFY: Apply ZF =md to the oven. Solve for @ and then use a constant acceleration equation to

calculate v,.

SET UP: We can use the free-body diagram that is in part (b):

XF, =ma,

F — f, —mgsin36.9°=ma

EXECUTE: a4 = F— /i —mgsin36.9° 110 N—19.6 N - (10 kg)(9.80 m/s?)sin36.9°
m 10.0 kg

SETUP: v, =0, ax:3.16m/s2, x—x9=8.00m, v, =?

=3.16 m/s’

2 2
Vax =Vix t Zax (x - XO)

EXECUTE: v,, =/2a,(x—x;) = \/2(3.16 m/s2)(8.00 m) =7.11 m/s
Then AK =K, - K, =1mv; =1(10.0 kg)(7.11 m/s)* =253 J.

EVALUATE: This agrees with the result calculated in part (d) using energy methods.
7.14.  IDENTIFY: Use the information given in the problem with F = kx to find k. Then U = %kxz.

SET UP: x is the amount the spring is stretched. When the weight is hung from the spring, F =mg.

_F _mg _ (3.15kg)(9.80 m/s”)
x x 0.1340m—0.1200 m

EXECUTE: £k =2205 N/m.

x= i\/tel = J_r\/ 20000 _ 10.0952 m =19.52 cm. The spring could be either stretched 9.52 cm or
k 2205 N/m

compressed 9.52 cm. If it were stretched, the total length of the spring would be
12.00 cm +9.52 cm =21.52 cm. If it were compressed, the total length of the spring would be
12.00 cm —9.52 cm =2.48 cm.

EVALUATE: To stretch or compress the spring 9.52 cm requires a force F =kx=210 N.
7.15.  IDENTIFY: Apply U, = %kxz.

SETUP: kx=F, so U= %Fx, where F'is the magnitude of force required to stretch or compress the

spring a distance x.
EXECUTE: (a) (1/2)(800 N)(0.200 m)=80.0 J.

(b) The potential energy is proportional to the square of the compression or extension;
(80.0 J) (0.050 m/0.200 m)? =5.0 J.

EVALUATE: We could have calculated &k = E = 800N
x 0.200 m

=4000 N/m and then used U, = %kx2 directly.
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7.16. IDENTIFY: We treat the tendon like a spring and apply Hooke’s law to it. Knowing the force stretching
the tendon and how much it stretched, we can find its force constant.
SETUP: Use F =kx. In part (a), Fy, tengon €quals mg, the weight of the object suspended from it.

n tendon

In part(b), also apply U, = %kxz to calculate the stored energy.

F

EXECUTE: (a) J=2on tendon _ (0-250 kg)(9-80 m/Sz)

0.0123 m

=199 N/m.

(b) x= FOl’l tendon — 138 N

k 199 N/m
EVALUATE: The 250 g object has a weight of 2.45 N. The 138 N force is much larger than this and
stretches the tendon a much greater distance.

717.  IDENTIFY: Apply Uy =2k,

=0.693m=69.3 cm; Uy =1(199 N/m)(0.693 m)> =47.8 1.

el =

SETUP: Uy= %kx& x is the distance the spring is stretched or compressed.

EXECUTE: (a) (i) x=2x, gives Uy =2k(2x))" = 4L kxg) =4U,. (i) x=x)/2 gives

Ug =1k(xy/2)* =L ki) =Uy/4.

(b) (i) U=2U, gives 1ir® =2(1kxj) and x=xv/2. (i) U=Uy/2 gives 1hx® =1 (1aj) and
x=xy/N2.

EVALUATE: U is proportional to x* and x is proportional to JU.

7.18. IDENTIFY: Apply Eq. (7.13).
SET UP: Initially and at the highest point, v=0, so K; =K, =0. W .. =0.
EXECUTE: (a) In going from rest in the slingshot’s pocket to rest at the maximum height, the potential
energy stored in the rubber band is converted to gravitational potential energy;
U =mgy =(10x10" kg)(9.80 m/s®) (22.0 m)=2.16 J.
(b) Because gravitational potential energy is proportional to mass, the larger pebble rises only 8.8 m.
(c) The lack of air resistance and no deformation of the rubber band are two possible assumptions.
EVALUATE: The potential energy stored in the rubber band depends on & for the rubber band and the
maximum distance it is stretched.

7.19. IDENTIFY and SET UP: Use energy methods. There are changes in both elastic and gravitational potential

energy; elastic; U =%kx2, gravitational: U =mgy.

EXECUTE: (a) U=1k so x= /27(] = /% =0.0632 m=6.32 cm
m

(b) Points 1 and 2 in the motion are sketched in Figure 7.19.

y “'::“U ¥ K +U +Wyper = Ky + U,
- UL” . W, e =0 (Only work is that done by gravity
v and spring force)
%_k i" gl 0 K;=0, K,=0
| x — ; ¥ =0 at final position of book
£l i Uy=mg(h+d), U,=41kd’

Figure 7.19

0+mg(h+d)+0="1kd’

The original gravitational potential energy of the system is converted into potential energy of the
compressed spring.
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%kd2 —mgd —mgh=0

d =l mg =+ (mg)2 +4(lk (mgh)
k 2
d must be positive, so d = %(mg + \/(mg)2 +2kmgh )

(1.20 kg)(9.80 m/s>) +

d=—
1600 N/m

\/((1.20 kg)(9.80 m/s?))? +2(1600 N/m)(1.20 kg)(9.80 m/sz)(0.80 m)
d=0.0074 m+0.1087 m=0.12 m=12 cm
EVALUATE: It was important to recognize that the total displacement was %+ d; gravity continues to do
work as the book moves against the spring. Also note that with the spring compressed 0.12 m it exerts an
upward force (192 N) greater than the weight of the book (11.8 N). The book will be accelerated upward

from this position.
7.20. IDENTIFY: Use energy methods. There are changes in both elastic and gravitational potential energy.
SETUP: K| +U, +W_yy. =K, +U,. Points 1 and 2 in the motion are sketched in Figure 7.20.

y The spring force and gravity are
the only forces doing work on the cheese,
# [ 50 Wygper =0 and U =Upyy, +U,.

]
#1 —Eﬂi x
=
Figure 7.20

EXECUTE: Cheese released from rest implies K; =0.

At the maximum height v, =0 so K, =0. U} =U, ¢ +U) 4y

»1 =0 implies U, g, =0

Uy =2/ =1(1800 N/m)(0.15 m)* =20.25 ]

(Here x; refers to the amount the spring is stretched or compressed when the cheese is at position 1; it is

not the x-coordinate of the cheese in the coordinate system shown in the sketch.)

Uy =Us o +Us gray Us gray =Mgy», Where y, is the height we are solving for. U, ;=0 since now the

spring is no longer compressed. Putting all this into K +U; +Wygper = Ky + U, gives Uy o =Uj gy

_20257 _ 20257 -1
mg (120 kg)(9.80 m/s>)

EVALUATE: The description in terms of energy is very simple; the elastic potential energy originally
stored in the spring is converted into gravitational potential energy of the system.

7.21. IDENTIFY: Apply Eq. (7.13).
SETUP: W 4. =0. Asin Example 7.7, K; =0 and U; =0.0250 J.

EXECUTE: For v,=0.20m/s, K,=0.0040J. U,=0.0210 =1k, and x=+ /% =+0.092m.
. m

The glider has this speed when the spring is stretched 0.092 m or compressed 0.092 m.
EVALUATE: Example 7.7 showed that v, =0.30 m/s when x=0.0800 m. As x increases, v, decreases,

so our result of v, =0.20 m/s at x=0.092 m is consistent with the result in the example.

72 m

2

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
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7.22.  IDENTIFY and SET UP: Use energy methods. The elastic potential energy changes. In part (a) solve for K,
and from this obtain v,. In part (b) solve for U and from this obtain X
(a) Kl + Ul + WotherzKZ + U2
point 1: the glider is at its initial position, where x; =0.100 m and v; =0
point 2: the glideris at x =0
EXECUTE: K| =0 (released fromrest), K, = %mv%
U = %kxlz , Uy=0, Wpe =0 (only the spring force does work)

Thus %kxf = %mv% (The initial potential energy of the stretched spring is converted entirely into kinetic

v, =x1\/z =(0.100 m) /3‘28% =0.500 m/s
m . g

(b) The maximum speed occurs at x =0, so the same equation applies.

energy of the glider.)

1 2 _ 1 2
E]QCI —EmVZ

X = vz\/% =2.50 m/s /% =0.500 m
. m

EvALUATE: Elastic potential energy is converted into kinetic energy. A larger x; gives a larger v,.

. . F - .
7.23.  IDENTIFY: Only the spring does work and Eq. (7.11) applies. a =—= _kx’ where F is the force the
m m

spring exerts on the mass.
SET UP: Let point 1 be the initial position of the mass against the compressed spring, so K; =0 and

U, =11.5J. Let point 2 be where the mass leaves the spring, so Uy, =0.

EXECUTE: (a) K| +U, =K, +Uqy, gives Uy =K. %mv% =U, and

204, _ 2(11.57) —3.03 m/s
m 2.50 kg ' '

K is largest when U, is least and this is when the mass leaves the spring. The mass achieves its maximum

speed of 3.03 m/s as it leaves the spring and then slides along the surface with constant speed.
(b) The acceleration is greatest when the force on the mass is the greatest, and this is when the spring has

2Uy :2\/ 2(11.5J)

its maximum compression. U, = Lix? so x= —\/ =—-0.0959 m. The minus sign

2

k 2500 N/m
indicates compression. ' =—kx=ma, and a, = (2500 Nm)(=0.0959 m) _ 95.9 m/s”.
m 2.50 kg

EVALUATE: If the end of the spring is displaced to the left when the spring is compressed, then a, in part

(b) is to the right, and vice versa.
7.24.  (a) IDENTIFY and SET UP: Use energy methods. Both elastic and gravitational potential energy changes.
Work is done by friction.

Choose point 1 as in Example 7.9 and let that be the origin, so y; =0. Let point 2 be 1.00 m below point 1,
so ¥, =—1.00 m.

EXECUTE: K| +U;+ Wy, =K, +U,
Ky =Lmvi =1(2000 kg)(25 m/s)* =625,000 1, U; =0
Wther =—/|¥2|=—(17,000 N)(1.00 m)=—-17,000 J

1,02
Ky =5mg;
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Uy =U, gray T Us ol =mgys +%k)’§

U, =(2000 kg)(9.80 m/s*)(~1.00 m)+1(1.41x10° N/m)(1.00 m)?
U, =—19,600 ] +70,500 J =+50,900 J

Thus 625,000 J~17,000 J =Lmv3 +50,900 J

Lmvi =557,100 1

Lo 26570000
2 2000 kg '

EVALUATE: The elevator stops after descending 3.00 m. After descending 1.00 m it is still moving but
has slowed down.

(b) IDENTIFY: Apply £F =md to the elevator. We know the forces and can solve for a.
SET UP: The free-body diagram for the elevator is given in Figure 7.24.

y EXECUTE: Fg,. =kd, where d is the distance
the spring is compressed
fi T B XF, =ma,
A fk+F;pr_mg=ma
1 Jx +hkd —mg =ma
mg

Figure 7.24

ge Jx +kd —mg _17,000 N + (1.41x10° N/m)(1.00 m)— (2000 kg)(9.80 m/s)
m 2000 kg
We calculate that « is positive, so the acceleration is upward.
EVALUATE: The velocity is downward and the acceleration is upward, so the elevator is slowing down at
this point. Note that @ =7.1g; this is unacceptably high for an elevator.
7.25. IDENTIFY: Apply Eq. (7.13) and F =ma.

SETUP: Wy, =0. There is no change in Uy,

=69.2 m/s’

EXECUTE: %kx2 = %mvf The relations for m, v,, kand x are fx? = mv)% and kx =5mg.
W2
Dividing the first equation by the second gives x = 5—x, and substituting this into the second gives
g
2

_ps5™Me
k=25"2 .

Vx

(1160 kg)(9.80 m/s?)?
(2.50 m/s)?
(250 m/s)
©5(9.80 m/s?)

EVALUATE: Our results for £ and x do give the required values for a, and v,:
a,= ke _ (4.46x10° N/m)(0.128 m) =492 m/s* =5.0g and v, =)c\/E =2.5m/s.
m 1160 kg ’ m

7.26.  IDENTIFY: The spring force is conservative but the force of friction is nonconservative. Energy is
conserved during the process. Initially all the energy is stored in the spring, but part of this goes to kinetic
energy, part remains as elastic potential energy, and the rest does work against friction.

=4.46x10° N/m

(a) k=25

(b) x 0.128 m

SET UP: Energy conservation: K; +U; +Wy.. =K, +U,, the elastic energy in the spring is U = %kx2 ,

and the work done by friction is Wy =— f s = —1y mgs.
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EXECUTE: The initial and final elastic potential energies are
Uy =1k’ =1(840 N/m)(0.0300 m)* =0.378 J and U, =L k7 =1(840 N/m)(0.0100 m)* =0.0420 J. The
initial and final kinetic energies are K; =0 and K, = %mv% The work done by friction is
Wother =W 5 = —fxs =— 4 mgs =—(0.40)(2.50 kg)(9.8 m/sz)(0.0200 m)=-0.196 J. Energy conservation
gives K, = %mv% =K, +U; + W per —U, =0.378 J+(-0.196 J) —0.0420 J =0.140 J. Solving for v, gives
2K 2(0.140J
vy = \/—2 _ [2O140D) 335 s,
m 2.50 kg
EVALUATE: Mechanical energy is not conserved due to friction.
7.27. IDENTIFY: Apply Wy = fiscosd. fi = yn.
SET UP: For a circular trip the distance traveled is d = 2zr. At each point in the motion the friction force
and the displacement are in opposite directions and ¢ =180°. Therefore, Ws == fd =—fiQrr). n=mg
SO fi = tmg.
EXECUTE: (a) Wy =—umg27r =—(0.250)(10.0 kg)(9.80 m/s?)(272)(2.00 m) = —308 J.
(b) The distance along the path doubles so the work done doubles and becomes —616 J.
(¢) The work done for a round trip displacement is not zero and friction is a nonconservative force.
EVALUATE: The direction of the friction force depends on the direction of motion of the object and that is
why friction is a nonconservative force.
7.28.  IDENTIFY: W, =mgcosy.
SET UP: When he moves upward, ¢ =180° and when he moves downward, ¢ =0°. When he moves
parallel to the ground, ¢ =90°.
EXECUTE: () Wy, = (75 kg)(9.80 m/s?)(7.0 m)cos180° =—5100 J.
(b) Wy = (75 kg)(9.80 m/s?)(7.0 m)cos0° =+5100 J.
(¢) $=90° in each case and Wy, =0 in each case.
(d) The total work done on him by gravity during the round trip is —5100 J+5100 J =0.
(e) Gravity is a conservative force since the total work done for a round trip is zero.
EVALUATE: The gravity force is independent of the position and motion of the object. When the object
moves upward gravity does negative work and when the object moves downward gravity does positive
work.
7.29. IDENTIFY: Since the force is constant, use W = Fscosg.
SET UP: For both displacements, the direction of the friction force is opposite to the displacement and
¢ =180°.
EXECUTE: (a) When the book moves to the left, the friction force is to the right, and the work is
—(1.2N)(3.0m)=-3.61J.
(b) The friction force is now to the left, and the work is again —3.6 J.
() —7.21.
(d) The net work done by friction for the round trip is not zero, and friction is not a conservative force.
EVALUATE: The direction of the friction force depends on the motion of the object. For the gravity force,
which is conservative, the force does not depend on the motion of the object.
7.30. IDENTIFY and SET UP: The force is not constant so we must use Eq. (6.14) to calculate /7. The properties

of work done by a conservative force are described in Section 7.3.
W=["Fdi, F=-ax
EXECUTE: (a) dl = dy}' (x is constant; the displacement is in the +y-direction )
F-dl =0 (since f-}=0) and thus W =0.
(b) dl =dxi
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F-dl =(~ax?i)-(dxi) =—ax” dx

2
W= L‘ (—ax®) dx=—1ax’ p=—go (3 -x})= —% ((0.300 m)> = (0.10 m)*)=—0.10J

(c) dl = dxi asin part (b), but now x; =0.30 m and x, =0.10 m

W=-to(x3-x))=+0.101

(d) EVALUATE: The total work for the displacement along the x-axis from 0.10 m to 0.30 m and then
back to 0.10 m is the sum of the results of parts (b) and (c), which is zero. The total work is zero when the
starting and ending points are the same, so the force is conservative.

EXECUTE: W, . =—ta(x —x)=tax —Lax;
The definition of the potential energy function is W, _,,, =U; —U,. Comparison of the two expressions

1
3

EVALUATE: In part (a) the work done is zero because the force and displacement are perpendicular. In
part (b) the force is directed opposite to the displacement and the work done is negative. In part (c) the
force and displacement are in the same direction and the work done is positive.

7.31. IDENTIFY and SET UP: The friction force is constant during each displacement and Eq. (6.2) can be used
to calculate work, but the direction of the friction force can be different for different displacements.

[ = mmg =(0.25)(1.5 kg)(9.80 m/sz) =3.675 N; direction of f is opposite to the motion.
EXECUTE: (a) The path of the book is sketched in Figure 7.31a.

for W gives U = ax®. This does correspond to U =0 when x=0.

Beth
T Carlos

you

Figure 7.31a

For the motion from you to Beth the friction force is directed opposite to the displacement s and
W =—fs=—(3.675N)(8.0 m)=-29.4 J.
For the motion from Beth to Carlos the friction force is again directed opposite to the displacement and
Wy,=-2941].
Wit =W +W,=-2941-294]=-59]
(b) The path of the book is sketched in Figure 7.31b.

Beth 8.0m Carlos 5= ,2(80 m)2 =113 m

Figure 7.31b

f is opposite to 5, so W =—fs=—(3.675 N)(11.3 m)=—42J
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7.32.

7.33.

7.34.

(c) f For the motion from you to Kim (Figure 7.31c)
- W=-—fs
you @— @ Kim W =-3.675N)(8.0 m)=-29.4]
_

s

Figure 7.31¢c

/
) For the motion from Kim to you (Figure 7.31d)
you @— @ Kim W=—fs=-294]
—
h)

Figure 7.31d

The total work for the round trip is —29.4 J-29.4 J=-59 J.

(d) EVALUATE: Parts (a) and (b) show that for two different paths between you and Carlos, the work done
by friction is different. Part (c) shows that when the starting and ending points are the same, the total work
is not zero. Both these results show that the friction force is nonconservative.

IDENTIFY: Some of the initial gravitational potential energy is converted to kinetic energy, but some of it
is lost due to work by the nonconservative friction force.

SET UP: The energy of the box at the edge of the roof is given by: Eeop ¢ = Eppech, i — fkS- Setting

g =0 at this point, y; =(4.25 m) sin36° =2.50 m. Furthermore, by substituting K; =0 and K; = %mvfz

into the conservation equation, %mvf2 =mgy; — fyS O vy = \/Zgyi -2 fisglw = \/2g(y,- — fis/w).

EXECUTE: v; = \/2(9.80 m/s?)[(2.50 m) — (22.0 N)(4.25 m)/(85.0 N)| = 5.24 ms.

EVALUATE: Friction does negative work and removes mechanical energy from the system. In the absence
of friction the final speed of the toolbox would be 7.00 m/s.

IDENTIFY: Some of the mechanical energy of the skier is converted to internal energy by the
nonconservative force of friction on the rough patch.

SETUP: For part (a) use Eyeop, p = Epeen, i — fi8 Where fi = iymg. Let yp =0 at the bottom of the hill;

then y; =2.50 m along the rough patch. The energy equation is thus %mvf2 = %mvi2 + mgy; — [y mgs.

ech, i

Solving for her final speed gives vy = \/ viZ + 2gy; — 244, gs. For part (b), the internal energy is calculated
as the negative of the work done by friction: =W, =+ fi.s =+ 4, mgs.

EXECUTE: (a) vy = \/(6.50 m/s)? + 2(9.80 m/s%)(2.50 m) — 2(0.300)(9.80 m/s?)(3.50 m) =8.41 m/s.

(b) Internal energy = 4y mgs = (0.300)(62.0 kg)(9.80 m/sz)(3.50 m) =638 J.

EVALUATE: Without friction the skier would be moving faster at the bottom of the hill than at the top, but
in this case she is moving slower because friction converted some of her initial kinetic energy into internal
energy.

IDENTIFY and SET UP: Use Eq. (7.17) to calculate the force from U(x). Use coordinates where the origin

is at one atom. The other atom then has coordinate x.

EXECUTE:
Rl 4 G 1) 0
: dx dx\ x dx\ x x’
The minus sign mean that F, is directed in the —x-direction, toward the origin. The force has magnitude

6C6/x7 and is attractive.

EVALUATE: U depends only onx so F is along the x-axis; it has no y or z components.
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7.35. IDENTIFY: Apply Eq. (7.16).
SET UP: The sign of F, indicates its direction.
EXECUTE: F, = _4v
dx
force is in the +x-direction.
EVALUATE: F_ >0 when x<0 and F, <0 when x>0, so the force is always directed towards the

4 3
=—4ax’ =—(4.81/m*)x’. F,(~0.800 m)=—(4.8 J/m*)(=0.80 m)’ =2.46 N. The

origin.
7.36.  IDENTIFY: Apply Eq. (7.18).

d(1 2 d| 1 2
SETUP: —| — |=——= and —| — |=——.
dx 2 x3 dy y2 3

X Yy
~ U, oU ~ . _ _
EXECUTE: F = —a—i —a—j since U has no z-dependence. U _ 2« and U _ ﬁ, SO
ox ay ox ‘c3 ay y3

F=-a _—§z+_—§] =2a 1—3+L3 .
x Y Xy

EVALUATE: F, and x have the same sign and F), and y have the same sign. When x>0, F\ is in the

+x-direction, and so forth.

7.37. IDENTIFY: From the potential energy function of the block, we can find the force on it, and from the force
we can use Newton’s second law to find its acceleration.

oUu oU .
SET Up: The force components are F, = S and F), = e The acceleration components are
X 'y

a, = F,/m and a, = F\,/m. The magnitude of the acceleration is a =, la% + ai and we can find its angle
with the +x axis using tané=a,/a,.

EXECUTE: F :—aa—U:—(11.6 J/m?)x and Fy:—a—U:(IO.S J/m>)y?. At the point
29

X
dy
(x=0.300m, y=0.600m), F, =—(11.6 J/m?)(0.300 m)=-3.48 N and
F

2 =972 m/s?, giving
m

F, =(10.8 J/m*)(0.600 m)* =3.89 N. Therefore a, = £ _ 870 mys? and a,=
m

a=, laf + aﬁ =130 m/s*> and tan@ = %, so 6=48.2°. The direction is 132° counterclockwise from

the +x-axis.
EVALUATE: The force is not constant, so the acceleration will not be the same at other points.
7.38. IDENTIFY: Apply Eq. (7.16).

SET UP: ‘;—U is the slope of the U versus x graph.
X

Sy . L d .
EXECUTE: (a) Considering only forces in the x-direction, F, = —d—U and so the force is zero when the
X

slope of the U vs x graph is zero, at points b and d.

(b) Point b is at a potential minimum; to move it away from b would require an input of energy, so this
point is stable.

(c) Moving away from point d involves a decrease of potential energy, hence an increase in kinetic energy,
and the marble tends to move further away, and so d is an unstable point.

EVALUATE: At point b, F, is negative when the marble is displaced slightly to the right and F, is
positive when the marble is displaced slightly to the left, the force is a restoring force, and the equilibrium
is stable. At point d, a small displacement in either direction produces a force directed away from d and the
equilibrium is unstable.
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7.39.  IDENTIFY and SET UP: Use Eq. (7.17) to calculate the force from U. At equilibrium F =0.
(a) EXECUTE: The graphs are sketched in Figure 7.39.

‘ T U=
\ 1 \ r r
\\ ; \! dU _ 12a 6b

F=—m=— ——

Figure 7.39

(b) At equilibrium F =0, so d—U =0
r
+12a  6b _

r13 r7

F =0 implies 0

6br® =12a; solution is the equilibrium distance 7, = (2a/h)"

U is a minimum at this »; the equilibrium is stable.

(©) At r=2a/b)"8, U =a/r'* —=bir® = a(b/2a)* - b(b/2a) =—b*/4a.
At r > oo, U =0. The energy that must be added is —AU = b*/4a.
(d) 1y =(2a/b)""® =1.13x1071" m gives that

2a/b=2.082x10"" m® and b/4a =2.402x10% m™°
b*/4a=b(b/4a)=1.54x10""8 ]

b(2.402x10%° m©)=1.54x107""% J and b=6.41x10""% J- m°.
Then 2a/b=2.082x10"%" m® gives a=(5/2)(2.082x107%° m%)=
1(6.41x107 7-m®) (2.082x107 m®) =6.67x107%% 1.m'?

EVALUATE: As the graphs in part (a) show, F(7) is the slope of U(r) at each . U(r) has a minimum
where F =0.

7.40. IDENTIFY: For the system of two blocks, only gravity does work. Apply Eq. (7.5).
SET UP: Call the blocks 4 and B, where A4 is the more massive one. v, =vp =0. Let y =0 for each

block to be at the initial height of that block, so y =y =0. y,» =-1.20m and yg, =+1.20 m.
Vg =Vpy =V =3.00 m/s.

EXECUTE: Eq. (7.5) gives 0=1(m+mp)vi +g(1.20 m)(mp —m g)-m,+mg =15.0 kg-

%(15.0 kg)(3.00 m/s)2 +(9.80 m/sz)(l.ZO m)(15.0 kg —2m ). Solving for m, gives m,=10.4 kg.
And then mp =4.6 kg.

EVALUATE: The final kinetic energy of the two blocks is 68 J. The potential energy of block 4 decreases
by 122 J. The potential energy of block B increases by 54 J. The total decrease in potential energy is
122 J—54 J =68 J, and this equals the increase in kinetic energy of the system.

7.41.  IDENTIFY: Apply TF =md to the bag and to the box. Apply Eq. (7.7) to the motion of the system of the
box and bucket after the bag is removed.

SETUP: Let y =0 at the final height of the bucket, so y; =2.00 m and y, =0. K; =0. The box and the

bucket move with the same speed v, so K, = %(mbox + mbucket)"2~ Wother = —fid, with d =2.00 m and

Jx = iy, g. Before the bag is removed, the maximum possible friction force the roof can exert on the

box is (0.700)(80.0 kg +50.0 kg)(9.80 m/sz) =892 N. This is larger than the weight of the bucket (637 N),
so before the bag is removed the system is at rest.
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7.42.

7.43.

EXECUTE: (a) The friction force on the bag of gravel is zero, since there is no other horizontal force on
the bag for friction to oppose. The static friction force on the box equals the weight of the bucket, 637 N.

. . 2
(b) Eq. (7.7 8IVES Mpycket&V1 — fkd = %mtotvz’ with My = 145.0 kg' v :\/ (mbucketgyl _lakmboxgd)-

Myt

v= \/#[(65.0 kg)(9.80 m/s?)(2.00 m)— (0.400)(80.0 kg)(9.80 m/s>)(2.00 m)].
145.0 kg

v=2.99 m/s.

EVALUATE: If we apply ZF =md to the box and to the bucket we can calculate their common
acceleration a. Then a constant acceleration equation applied to either object gives v=2.99 m/s, in
agreement with our result obtained using energy methods.

IDENTIFY: Apply Eq. (7.14).

SET UP: Only the spring force and gravity do work, so W, =0. Let y =0 at the horizontal surface.
EXECUTE: (a) Equating the potential energy stored in the spring to the block's kinetic energy,

Lix®> =Lmy?, or v=\/2x= M(O.ZZOm):&llm/s.
2 2 m 2.00kg

(b) Using energy methods directly, the initial potential energy of the spring equals the final gravitational

Lie® 1(400 N/m)(0.220 m)?

mgsin®  (2.00 kg)(9.80 m/s?)sin37.0°
EVALUATE: The total energy of the system is constant. Initially it is all elastic potential energy stored in
the spring, then it is all kinetic energy and finally it is all gravitational potential energy.

IDENTIFY: Use the work-energy theorem, Eq. (7.7). The target variable z will be a factor in the work

=0.821 m.

potential energy, %kx2 =mgLsin@, or L=

done by friction.

SET UP: Let point 1 be where the block is released and let point 2 be where the block stops, as shown in
Figure 7.43.

Ky + Uy +Wother = Ky +U»

Work is done on the block by
0 the spring and by friction,
80 Wyher =W, and U =U,.

V= ()

sl

g e
= 2

1.OOm —

Figure 7.43

EXECUTE: K, =K, =0

Uy =U, g =1k =1(100 N/m)(0.200 m)* =2.00 J

U, =U, o =0, since after the block leaves the spring has given up all its stored energy

Wother =Wy = (fi cos@)s = wmg (cos@)s = —pymgs, since ¢=180° (The friction force is directed

opposite to the displacement and does negative work.)
Putting all this into K; +U; + W .. =K, +U, gives

Ul,el + Wf = 0
Hmgs =U
_Uia _ 2.00J

1, = : =0.41
mgs  (0.50 kg)(9.80 m/s>)(1.00 m)

EVALUATE: U +W, =0 says that the potential energy originally stored in the spring is taken out of the

system by the negative work done by friction.
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7.44. IDENTIFY: Apply Eq. (7.14). Calculate f, from the fact that the crate slides a distance x=5.60 m
before coming to rest. Then apply Eq. (7.14) again, with x =2.00 m.
SETUP: U;=U,=360J. U,=0. K;=0. Wy =—fx
EXECUTE: Work done by friction against the crate brings it to a halt: U; =W,

other*
. . 3607
Jxx = potential energy of compressed spring , and f; = s =64.29 N.
m

The friction force working over a 2.00-m distance does work equal to
—fix =—(64.29 N)(2.00 m) =—128.6 J. The kinetic energy of the crate at this point is thus

360 J—128.6J =231.4], and its speed is found from mv?/2=231.4 J, sov= %:304 m/s.
U kg

EVALUATE: The energy of the compressed spring goes partly into kinetic energy of the crate and is partly
removed by the negative work done by friction. After the crate leaves the spring the crate slows down as
friction does negative work on it.

7.45. IDENTIFY: The mechanical energy of the roller coaster is conserved since there is no friction with the
track. We must also apply Newton’s second law for the circular motion.
SET UpP: For part (a), apply conservation of energy to the motion from point 4 to point B:

Kp+Ugqy, =K+ Ugy 4 With K =0. Defining yz =0 and y, =13.0 m, conservation of energy

becomes %mvB2 =mgy, or vz =./2gy 4. Inpart (b), the free-body diagram for the roller coaster car at

point B is shown in Figure 7.45. XF, = ma, gives mg + n=mag,y, where a,q= v¥/r. Solving for the

rad>

. v
normal force gives n = m(— - g].
r

"

ol

) mg
a=uviIR *

|

b

Figure 7.45

EXECUTE: (a) v5 =+2(9.80 m/s2)(13.0 m) =16.0 m/s.

(16.0 m/s)*
m

() n=(350 kg) ~9.80 m/sz}:usmo“N.

EVALUATE: The normal force 7 is the force that the tracks exert on the roller coaster car. The car exerts a
force of equal magnitude and opposite direction on the tracks.

7.46. IDENTIFY: Apply Eq. (7.14) to relate # and vy. Apply YF =md at point B to find the minimum speed
required at B for the car not to fall off the track.
SETUP: AtB, a= vlzi./R, downward. The minimum speed is when #» — 0 and mg = mvé/R. The

minimum speed required is vz =+/gR. K;=0and W =0.

EXECUTE: (a) Eq. (7.14) applied to points 4 and B gives U —Up = %mvf;. The speed at the top must be
at least /gR. Thus, mg(h—2R) > %ng, or h> %R.

(b) Apply Eq. (7.14) to points 4 and C. U 4, —U- =(2.50)Rmg =K, so

ve =/(5.00)gR =+/(5.00)(9.80 m/s?)(20.0 m) =31.3 m/s.
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The radial acceleration is a4 = 7C =49.0 m/s®. The tangential direction is down, the normal force at

point C is horizontal, there is no friction, so the only downward force is gravity, and a,,, = g =9.80 m/s?.
EVALUATE: If h> %R, then the downward acceleration at B due to the circular motion is greater than g
and the track must exert a downward normal force n. n increases as 4 increases and hence

vp increases.

7.47. (a) IDENTIFY: Use work-energy relation to find the kinetic energy of the wood as it enters the rough
bottom.
SET UP: Let point 1 be where the piece of wood is released and point 2 be just before it enters the rough
bottom. Let y =0 be at point 2.
EXECUTE: U, =K, gives K, =mgy,; =784 ].
IDENTIFY: Now apply work-energy relation to the motion along the rough bottom.
SET UP: Let point 1 be where it enters the rough bottom and point 2 be where it stops.

Ki+U +Wyper =K, +U,
EXECUTE:  Wypor =Wy =—pymgs, K, =U;=U,=0; K;=784]
78.4 J -ty mgs = 0; solving for s gives s =20.0 m.
The wood stops after traveling 20.0 m along the rough bottom.
(b) Friction does —78.4 J of work.
EVALUATE: The piece of wood stops before it makes one trip across the rough bottom. The final mechanical

energy is zero. The negative friction work takes away all the mechanical energy initially in the system.
7.48.  IDENTIFY: Apply Eq. (7.14) to the rock. W 4. =W T

SETUP: Let y =0 at the foot of the hill, so U; =0 and U, = mgh, where # is the vertical height of the

rock above the foot of the hill when it stops.

EXECUTE: (a) At the maximum height, K , =0. Eq.(7.14) gives K =U

Bottom +Wfk ~ Y Top”

1 5 . 15 h
—mv. — U, mgcos@ d=mgh. d="h/sin@, so —v) — cos@ =gh.

L 15 mis)? = (020)(9.8 mys?) $220
2 sin40°

(b) Compare maximum static friction force to the weight component down the plane.

Js = usmgcosf =(0.75)(28 kg)(9.8 m/s>)cos40° =158 N.

mgsind = (28 kg)(9.8 m/sz)(sin 40°) =176 N > f, so the rock will slide down.

(c¢) Use same procedure as in part (a), with #=9.3m and Vg being the speed at the bottom of the hill.

h=(9.8 m/s*)h and h=9.3 m.

h 1 5
UTop-i-Wfk =Kjp. mgh—,ukmgcosﬁﬂzzmvB and

Vg =\/2gh—2,ukghcos¢9/sint9 =11.8 m/s.

EVALUATE: For the round trip up the hill and back down, there is negative work done by friction and the

speed of the rock when it returns to the bottom of the hill is less than the speed it had when it started up the hill.
7.49. IDENTIFY: Apply Eq. (7.7) to the motion of the stone.

SETUP: K| +U;+W 4o =K, +U,

Let point 1 be point 4 and point 2 be point B. Take y =0 at point B.

EXECUTE: mgy, +%mv2 =lmv§, with £=20.0 m and v; =10.0 m/s

2
vy = \lvlz +2gh =222 m/s

EVALUATE: The loss of gravitational potential energy equals the gain of kinetic energy.
(b) IDENTIFY: Apply Eq. (7.8) to the motion of the stone from point B to where it comes to rest against
the spring.
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SETUP: Use K| +U; + Wy, = K, +U,, with point 1 at B and point 2 where the spring has its maximum
compression x.
Execute: U, =U, =K, =0; K| =%mv12 with v; =22.2 m/s
Wother =Wy +Wey =1, mgs Lo, with s =100 m+x
The work-energy relation gives K+ Wy, =0.
2 2
%mvl — [, mgs —%kx =0
Putting in the numerical values gives x> +29.4x—750=0. The positive root to this equation is x =16.4 m.
EVALUATE: Part of the initial mechanical (kinetic) energy is removed by friction work and the rest goes
into the potential energy stored in the spring.
(c) IDENTIFY and SET UP: Consider the forces.
EXECUTE: When the spring is compressed x =16.4 m the force it exerts on the stone is
F, = kx =32.8 N. The maximum possible static friction force is
max f, = umg =(0.80)(15.0 kg)(9.80 m/s?) =118 N.
EVALUATE: The spring force is less than the maximum possible static friction force so the stone remains
at rest.
7.50. IDENTIFY: Once the block leaves the top of the hill it moves in projectile motion. Use Eq. (7.14) to relate
the speed vy at the bottom of the hill to the speed vy, at the top and the 70 m height of the hill.
SET UP: For the projectile motion, take +y to be downward. a, =0, a, =g. vy, =Vvrep, Vo, =0. For
the motion up the hill only gravity does work. Take y =0 at the base of the hill.
EXECUTE: First get speed at the top of the hill for the block to clear the pit. y = % gtz.
1 2.2 . 40 m
20m=—(98m/s")t". 1=2.0s. Then vy, t =40 m gives vp,, =——=20 m/s.
2 2.0s
Energy conservation applied to the motion up the hill: Kgom =Urgp + K1op gives
1 1
S = megh+—mp. vy = JPop +28h =/(20 m/s)? +2(9.8 m/s>)(70 m) =42 mis.
EVALUATE: The result does not depend on the mass of the block.
7.51. IDENTIFY: Apply K +U; +W_ 4. =K, +U, to the motion of the person.
SET UP: Point 1 is where he steps off the platform and point 2 is where he is stopped by the cord. Let
y=0 atpoint2. y; =41.0 m. Wy = —%kxz, where x=11.0 m is the amount the cord is stretched at
point 2. The cord does negative work.
EXECUTE: K, =K,=U,=0, so mgy; 1k’ =0 and k=631 N/m.
Now apply F = kx to the test pulls:
F=hkx so x=F/k=0.602 m.
EVALUATE: All his initial gravitational potential energy is taken away by the negative work done by the
force exerted by the cord, and this amount of energy is stored as elastic potential energy in the stretched cord.
7.52. IDENTIFY: Apply Eq. (7.14) to the motion of the skier from the gate to the bottom of the ramp.

SETUP: W 4. =-4000J. Let y =0 at the bottom of the ramp.

EXECUTE: For the skier to be moving at no more than 30.0 m/s, his kinetic energy at the bottom of the

2 2
ramp can be no bigger than % _ 850 kg)(230.0 m/s)

him during his run, which means his combined U and K at the top of the ramp must be no more than
mv®  (85.0 kg)(2.0 m/s)*
2 2

=38,250 J. Friction does —4000 J of work on

38,250 J+4000 J =42,250J. His K at the top is

=170 J. His U at the top
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should thus be no more than 42,250J—170 J =42,080J, which gives a height above the bottom of the
42,080J 42,080J _
mg (85.0 kg)(9.80 m/s?)

EVALUATE: In the absence of air resistance, for this / his speed at the bottom of the ramp would be
31.5 m/s. The work done by air resistance is small compared to the kinetic and potential energies that enter
into the calculation.

7.53. IDENTIFY: Use the work-energy theorem, Eq. (7.7). Solve for K, and then for v,.

ramp of h= 0.5 m.

SET UP: Let point 1 be at his initial position against the compressed spring and let point 2 be at the end of
the barrel, as shown in Figure 7.53. Use F =kx to find the amount the spring is initially compressed by
the 4400 N force.

K+ U + Wopper = K5 +U,

Take y =0 at his initial position.

. = =102
EXECUTE: K; =0, K;=75mv;
Wother = Whic = —Js

Woher =—(40 N)(4.0 m) =160 J

Figure 7.53

Ulgrav =0, Ujg = %kd 2, where d is the distance the spring is initially compressed.
Fekd sod=2= 20N _400m
k1100 N/m

and Uy g = %(l 100 N/m)(4.00 m)* = 8800 J

U3 gray = Mgy, = (60 kg)(9.80 m/s*)(2.5 m)=1470 J, Uy =0
Then K; +U; + Wy = K, +U, gives

8800 J -160 J:%mvf +1470]

%mv§=7170J and v, = wzlS.S m/s
60 kg

EVALUATE: Some of the potential energy stored in the compressed spring is taken away by the work done
by friction. The rest goes partly into gravitational potential energy and partly into kinetic energy.
7.54. IDENTIFY: To be at equilibrium at the bottom, with the spring compressed a distance x,, the spring force

must balance the component of the weight down the ramp plus the largest value of the static friction, or
kxy =wsin@+ f. Apply Eq. (7.14) to the motion down the ramp.
SETuP: K, =0, K, = %mvz, where v is the speed at the top of the ramp. Let U, =0, so U; =wLsiné,

where L is the total length traveled down the ramp.

. 1 . 1 . .
EXECUTE: Eq. (7.14) gives Ekxg =(wsinf— )L+ Emv2 . With the given parameters, %kxg =248 and

kg =1.10x10% N. Solving for k gives k = 2440 N/m.
EVALUATE: x3=0.451m. wsind =551 N. The decrease in gravitational potential energy is only slightly

larger than the amount of mechanical energy removed by the negative work done by friction.

%mv2 =243 J. The energy stored in the spring is only slightly larger than the initial kinetic energy of the

crate at the top of the ramp.
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7.55. IDENTIFY: Apply Eq. (7.7) to the system consisting of the two buckets. If we ignore the inertia of the
pulley we ignore the kinetic energy it has.
SETUP: K| +U; +W_ 4o =K, +U,. Points 1 and 2 in the motion are sketched in Figure 7.55.

5
y .
Y41 =200m Ya2=10
) y 1=0 v 1 '\Ih’.z = 200m
m__i 1-\ o= ll.‘!l = 0 82
mg 2.000 2.00 m A9
2.00m [ Iz’ ‘ A2
Figure 7.55
The tension force does positive work on the 4.0 kg bucket and an equal amount of negative work on the
12.0 kg bucket, so the net work done by the tension is zero.
Work is done on the system only by gravity, so Wype =0 and U =Uy,,
EXECUTE: K;=0
K, = %m AVi,z +%m BV§,2 But since the two buckets are connected by a rope they move together and have
the same speed: v, =vg, =v;.
Thus K, =1(m4+mp)vi = (8.00 kg)v3.
Uy =mygy,; =(12.0 kg)(9.80 m/s?)(2.00 m) =235.2 1.
U, =mggyp, = (4.0 kg)(9.80 m/s?)(2.00 m) =78.4 J.
Putting all this into K; +U; + Wy, = K, +U, gives
235.21=(8.00 kg)v% +78.41]
23527J-78.4
vy = 23521-7847 =44 m/s
8.00 kg

EVALUATE: The gravitational potential energy decreases and the kinetic energy increases by the same
amount. We could apply Eq. (7.7) to one bucket, but then we would have to include in W, the work
done on the bucket by the tension 7.

7.56. IDENTIFY: Apply K| +U; + Wy = K, +U, to the motion of the rocket from the starting point to the

base of the ramp. W, is the work done by the thrust and by friction.
SET UP: Let point 1 be at the starting point and let point 2 be at the base of the ramp. v, =0,
v, =50.0 m/s. Let y =0 at the base and take +y upward. Then y, =0 and y; =dsin53°, where d is the

distance along the ramp from the base to the starting point. Friction does negative work.
EXECUTE: K;=0, U, =0. U+ W =Ky. Wopper =(2000 N)d — (500 N)d = (1500 N)d.

mgdsin53°+ (1500 N)d =Lmv3.

2 2
d= ‘ mvy _ (1500 kg)(Sg).O m/s) 142 m.
2[mgsin53°+1500 N]  2[(1500 kg)(9.80 m/s”)sin53°+1500 N]
EVALUATE: The initial height is y; = (142 m)sin53°=113 m. An object free-falling from this distance
attains a speed v=./2gy; =47.1 m/s. The rocket attains a greater speed than this because the forward

thrust is greater than the friction force.
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7.57.

7.58.

7.59.

IDENTIFY: Apply K| +U; + Wy =K, +U,
SETUP: U, =U, =K, =0. Wyper =W, =—p4mgs, with s =280 ft=85.3m
EXECUTE: (a) The work-energy expression gives %mvlz -y mgs =0.

Vi =+/244 gs =22.4 m/s =50 mph; the driver was speeding.

(b) 15 mph over speed limit so $150 ticket.

EVALUATE: The negative work done by friction removes the kinetic energy of the object.

IDENTIFY: Conservation of energy says the decrease in potential energy equals the gain in kinetic energy.
SET UP: Since the two animals are equidistant from the axis, they each have the same speed v.

EXECUTE: One mass rises while the other falls, so the net loss of potential energy is

(0.500 kg —0.200 kg)(9.80 m/sz)(0.400 m)=1.176 J. This is the sum of the kinetic energies of the

animals and is equal to lmtotvz, and v= 20176 1) =1.83 my/s.
2 (0.700 kg)

EVALUATE: The mouse gains both gravitational potential energy and kinetic energy. The rat’s gain in
kinetic energy is less than its decrease of potential energy, and the energy difference is transferred to the
mouse.

(a) IDENTIFY and SET UP: Apply Eq. (7.7) to the motion of the potato. Let point 1 be where the potato is
released and point 2 be at the lowest point in its motion, as shown in Figure 7.59a.

Ky + U+ Wopner = Ky +U,

»1=250m

Y2 =0

The tension in the string is at all points in the

motion perpendicular to the displacement, so W, =0
The only force that does work on the potato is gravity,
$0 Wyiher = 0.

Figure 7.59a

EXECUTE: K;=0, K, :%mvg, U, =mgy,, U,=0. Thus U, =K,. mgy, :%mvg, which gives

vy = I2gy1 =\/2(9.80 m/s?)(2.50 m) =7.00 m/s.
EVALUATE: The speed v, is the same as if the potato fell through 2.50 m.

(b) IDENTIFY: Apply F =ma to the potato. The potato moves in an arc of a circle so its acceleration is
g, where a4 = VYR and is directed toward the center of the circle. Solve for one of the forces, the

tension 7' in the string.
SET UP: The free-body diagram for the potato as it swings through its lowest point is given in Figure 7.59b.

Y The acceleration a4 is directed in toward

the center of the circular path, so at this
point it is upward.

mg

Figure 7.59b
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2

EXECUTE: XF), =ma, gives T —mg =ma,. Solving for T gives T =m(g +ayq) = m{g +%j, where

the radius R for the circular motion is the length L of the string. It is instructive to use the algebraic
expression for v, from part (a) rather than just putting in the numerical value: v, =/2gy; =+/2gL, so

2
v% =2gL. Then T = m[g + V?z] = m[g + %) =3mg. The tension at this point is three times the weight

of the potato, so 7 =3mg =3(0.300 kg)(9.80 m/sz) =8.82 N.

EVALUATE: The tension is greater than the weight; the acceleration is upward so the net force must be upward.

7.60. IDENTIFY: Eq.(7.14)says Wy, =K, +U, — (K| +U;). Wy, is the work done on the baseball by the
force exerted by the air.
2

SETUP: U =mgy. K:%mvz, where v :vf+v}2,.

EXECUTE: (a) The change in total energy is the work done by the air,
1
Wother = (K +Us) = (K, +U)) = m[;(v% —vf>+gy2j-

Wiher = (0.145 kg)((1/2[(18.6 m/s)* —(30.0 m/s)* — (40.0 m/s)* ]+ (9.80 m/s*)(53.6 m)).
Woiher = —80.0 1.

(b) Similarly, W, ;.. = (K3 +Us)— (K, +U,).

Woiher = (0.145 kg)((1/2)[(11.9 m/s)? +(=28.7 m/s)* — (18.6 m/s)*]—(9.80 m/s*)(53.6 m))
Woper =—31.31.

(¢) The ball is moving slower on the way down, and does not go as far (in the x-direction), and so the work
done by the air is smaller in magnitude.

EVALUATE: The initial kinetic energy of the baseball is %(0.145 kg)(50.0 m/s)2 =1811J. For the total
motion from the ground, up to the maximum height, and back down the total work done by the airis 111 J.
The ball returns to the ground with 181 J—111J=701J of kinetic energy and a speed of 31 m/s, less than
its initial speed of 50 m/s.

7.61.  IDENTIFY and SET UP: There are two situations to compare: stepping off a platform and sliding down a
pole. Apply the work-energy theorem to each.
(a) EXECUTE: Speed at ground if steps off platform at height 4:
Ky + U+ Woner = Ky + U,
mgh z%mvg, S0 v% =2gh
Motion from top to bottom of pole: (take y =0 at bottom)
K+ U+ Wother = Ky + U,

mgd — fd = %mv%

Use vf =2gh and get mgd — fd = mgh

fd =mg(d—h)

f=mg(d—h)/d=mg(1-h/d)

EVALUATE: For h=d this gives f =0 as it should (friction has no effect).

For =0, v, =0 (no motion). The equation for f gives f =mg in this special case. When f =mg the
forces on him cancel and he doesn’t accelerate down the pole, which agrees with v, =0.

(b) EXECUTE: [ =mg(1—h/d)= (75 kg)(9.80 m/s*)(1-1.0 m/2.5 m) = 441 N.

(c) Take y =0 at bottom of pole, so y;=d and y, =y.

K +U; + Wy = Ky +U,
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0+mgd—f(d—y)=%mv2+mgy
Imv? =mg(d-y)- f(d-y)
Using f =mg(1—-h/d) gives %mv2 =mg(d—-y)—mg(1—h/d)(d-y)

1mv? =mg(h/d)(d - y) and v=\[2gh(1 - y/d)

EVALUATE: This gives the correct results for y =0 and for y=d.

7.62. IDENTIFY: Apply Eq. (7.14) to each stage of the motion.

SETUP: Let y =0 at the bottom of the slope. In part (a), Wy, is the work done by friction. In part (b),
WO
force exerted by the snowdrift.

EXECUTE: (a) The skier’s kinetic energy at the bottom can be found from the potential energy at the top

minus the work done by friction, K; =mgh—W, =(60.0 kg)(9.8 N/kg)(65.0 m)—-10,500 J, or

K, =38,200J-10,500 J =27,720 J. Then v, =, f& _ |A27.7209) =30.4 m/s.
m 60 kg

(b) Ky =Ky (W, + W) =27,720 I — (mgd + fondl).
K, =27,720 T=[(0.2)(588 N)(82 m) + (160 N)(82 m)] or K, =27,720 ] —22,763 ] =4957 J. Then,

= /ﬁ_ 2(49579) _ 15 9 ms
2 Am 60 kg '

(c) Use the Work-Energy Theorem to find the force. W =AK, F =K/d =(4957 J)/(2.5 m)=2000 N.

EVALUATE: In each case, W, isnegative and removes mechanical energy from the system.

her 1 the work done by friction and the air resistance force. In part (c), Wy, is the work done by the

7.63.  IDENTIFY and SET UP: First apply XF =ma to the skier.
Find the angle ¢ where the normal force becomes zero, in terms of the speed v, at this point. Then apply
the work-energy theorem to the motion of the skier to obtain another equation that relates v, and «. Solve
these two equations for o.

Let point 2 be where the skier loses contact

with the snowball, as sketched in Figure 7.63a
Loses contact implies n — 0.

Y1=R, y,=Rcosa

Figure 7.63a

First, analyze the forces on the skier when she is at point 2. The free-body diagram is given in Figure 7.63b.
For this use coordinates that are in the tangential and radial directions. The skier moves in an arc of a

circle, so her acceleration is a4 = Vv?/R, directed in towards the center of the snowball.

Qg 1 EXECUTE: XF, =ma,
mgcoso—n= mv%/R
But n=0 so mgcosa = mvg/R

v% =Rgcosx

Figure 7.63b

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



7-24 Chapter 7

Now use conservation of energy to get another equation relating v, to a:
K +U +Wypee =Ky +U,

The only force that does work on the skier is gravity, so Wy, =0.

K, =0, K, =%mv§

U, =mgy, =mgR, U, =mgy, =mgRcosa

Then mgR = %mvf +mgRcosx

V3 =2gR(1—cosa)

Combine this with the £F), =ma, equation:

Rgcosa=2gR(1-cos)

cos=2-2cos

3cosx=2 so cosax=2/3 and o =48.2°

EVALUATE: She speeds up and her a,,y increases as she loses gravitational potential energy. She loses
contact when she is going so fast that the radially inward component of her weight isn’t large enough to
keep her in the circular path. Note that & where she loses contact does not depend on her mass or on the
radius of the snowball.

7.64. IDENTIFY: Initially the ball has all kinetic energy, but at its highest point it has kinetic energy and
potential energy. Since it is thrown upward at an angle, its kinetic energy is not zero at its highest point.
SET UP: Apply conservation of energy: K; + Uy =K;+U,. Let y; =0, so y; = h, the maximum height.
At this maximum height, v¢ |, =0 and v¢ , =v; ,, so vy =v; , = (15 m/s)(c0s60.0°) = 7.5 m/s. Substituting

into conservation of energy equation gives %mvi2 =mgh+ %m(7.5 m/s)>.

vE—(7.5ms)? (15 m/s)? — (7.5 m/s)*
2g 2(9.80 m/s?)

EVALUATE: If the ball were thrown straight up, its maximum height would be 11.5 m, since all of its
kinetic energy would be converted to potential energy. But in this case it reaches a lower height because it
still retains some kinetic energy at its highest point.

7.65.  IDENTIFY and SET UP:

EXECUTE: Solve for h: h= 8.6 m

Ya=R
A yg=yc=0

A
b
vy = 4.80 mfs v S0

—

B C

Figure 7.65

(a) Apply conservation of energy to the motion from B to C:
Kp+Up+Wyper = K +Uc. The motion is described in Figure 7.65.

EXECUTE: The only force that does work on the package during this part of the motion is friction, so
Wother =Wy = fi(cos9)s = 1, mg(cos180°)s =4, mgs

1 2 —
KB—EmVB, Kc—o

UB:()’ UC:()
Thus KB +Wf'=0

%mvé —p, mgs=0

My (480 m/s)’

K 2gs 2(9.80 m/s?)(3.00m)
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EVALUATE: The negative friction work takes away all the kinetic energy.
(b) IDENTIFY and SET UP: Apply conservation of energy to the motion from 4 to B:

Ky+Uy+Woner =Kp+Up
EXECUTE: Work is done by gravity and by friction, s0 Wye =W

K, =0, Kz=Xmv=1(0200kg)(4.80 m/s)* =2.304J

1
2
U 4 =mgy 4 = mgR = (0.200 kg)(9.80 m/s*)(1.60 m)=3.136 J, Uz =0

Thus Uy + W, =Kg

W,=Kp-U,=2304J-3.136J=-0.83]

EVALUATE: W, is negative as expected; the friction force does negative work since it is directed

opposite to the displacement.
7.66.  IDENTIFY: Apply Eq. (7.14) to the initial and final positions of the truck.
SETUP: Let y=0 atthe lowest point of the path of the truck. W, is the work done by friction.

Jr = pn = pmg cos f.
EXECUTE: Denote the distance the truck moves up the ramp by x. K; = %mvg , Uy =mgLsina, K, =0,

U, =mgxsin f and Wy, =—umgxcos ff. From Wy .. = (K, +U,)— (K, +U;), and solving for x,

oo Ki+mglsina  _ (vi/2g) + Lsinax
mg(sin B+ pr,cos B)  sin B+, cos B
EVALUATE: x increases when v, increases and decreases when (4, increases.
7.67. F.=-ax-pfx*, a=60.0N/m and B=18.0 N/m?

(a) IDENTIFY: Use Eq. (6.7) to calculate ¥ and then use W =-AU to identify the potential energy
function U(x).

. P — x2
SETUP: Wy =U,-U, _-[n F (x)dx
Let x; =0 and U; =0. Let x, be some arbitrary point x, so U, =U(x).
X X X
EXECUTE: U(x)= —IO F.(x)dx= _J.o (—ax— Bx*) dx = Jlo (ax + Bx?) dx = %axz + %ﬂx3.

EVALUATE: If f=0, the spring does obey Hooke’s law, with k£ = ¢, and our result reduces to %kxz.

(b) IDENTIFY: Apply Eq. (7.15) to the motion of the object.
SET UP: The system at points 1 and 2 is sketched in Figure 7.67.

:_\-=u 5 K+ Ui+ Wopher = Ky + U,
I'I =

" The only force that does work on the object
J\)'\/\/\/\’ﬂ is the spring force, so Wy, =0.

X2= 050 m
Figure 7.67

EXECUTE: K, =0, K, =1mv;

Uy =U(x) =Laat +1 8x =1(60.0 N/m)(1.00 m)* +1(18.0 N/m*)(1.00 m)* =36.0 J
U, =U(xy) =L o +1 x5 =1.(60.0 N/m)(0.500 m)* +1(18.0 N/m*)(0.500 m)* =8.25 J
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Thus 36.0 J=1mv] +8251]

L _ [26607-825D) ..
2 0.900 kg '

EVALUATE: The elastic potential energy stored in the spring decreases and the kinetic energy of the
object increases.

7.68. IDENTIFY: Mechanical energy is conserved on the hill, which gives us the speed of the sled at the top.
After it leaves the cliff, we must use projectile motion.
SET Up: Use conservation of energy to find the speed of the sled at the edge of the cliff. Let y; =0 so

ye=h=11.0m. K;+U;=K;+U, gives %mvf2 + mgh = %mvi2 or vp = \/viz —2gh. Then analyze the

projectile motion of the sled: use the vertical component of motion to find the time ¢ that the sled is in the
air; then use the horizontal component of the motion with @, =0 to find the horizontal displacement.

EXECUTE: v = \/(22.5 m/s)> —2(9.80 m/s*)(11.0 m) =17.1m/s. yp=v; t+1at” gives

2 2(-11. .
1= |22 = /(—Omz) =1.50s. xp =v, f+La,r® gives xp =v; ¢ =(17.1 m/5)(1.50 5) = 25.6 m.
a, \-9.80 m/s ’ ’

EVALUATE: Conservation of energy can be used to find the speed of the sled at any point of the motion
but does not specify how far the sled travels while it is in the air.

7.69. IDENTIFY: Apply Eq. (7.14) to the motion of the block.
SETUP: Let y =0 at the floor. Let point 1 be the initial position of the block against the compressed

spring and let point 2 be just before the block strikes the floor.

EXECUTE: With U, =0,K,=0, K,=Uy. 1mvj =Lkx® +mgh. Solving for v,,

2 2
v, = \/kx—+2gh _ [4900 NMm)(©.045 m)” | g g0 1/s?)(1.20 m) = 7.01 muss.
m (0.150 kg)

EVALUATE: The potential energy stored in the spring and the initial gravitational potential energy all go
into the final kinetic energy of the block.

7.70.  IDENTIFY: Apply Eq. (7.14). U is the total elastic potential energy of the two springs.
SET UP: Call the two points in the motion where Eq. (7.14) is applied 4 and B to avoid confusion with
springs 1 and 2, that have force constants k; and &,. At any point in the motion the distance one spring is
stretched equals the distance the other spring is compressed. Let +x be to the right. Let point 4 be the
initial position of the block, where it is released from rest, so x; , =+0.150 m and x, , =-0.150 m.

EXECUTE: (a) With no friction, Wy, =0. K,=0 and U, = Ky +Up. The maximum speed is when

Up =0and this is at x5 = x,5 =0, when both springs are at their natural length.

1,2 J1p .2 1.2 2 _ .2 _ 2
Ekl.xlA +5k2X2A—EmVB. xlA—XZA—(O.ISO m) , SO

(0150 m)y= | 2200 N/m+2000N/m ;55— 6 00 mss.
3.00 kg

_ |tk

VB

(b) At maximum compression of spring 1, spring 2 has its maximum extension and vy = 0. Therefore, at

this point U , =Up. The distance spring 1 is compressed equals the distance spring 2 is stretched, and vice
versa: x; 4 =-X,, and x;p =-x,5. Then U, =Ujy gives %(kl +k2)x12A = %(kl +k2)x123 and
X3 =—%4=-0.150 m. The maximum compression of spring 1 is 15.0 cm.

EVALUATE: When friction is not present mechanical energy is conserved and is continually transformed
between kinetic energy of the block and potential energy in the springs. If friction is present, its work
removes mechanical energy from the system.
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7.71.  IDENTIFY: Apply conservation of energy to relate x and 4. Apply XF =md to relate @ and x.
SET UP: The first condition, that the maximum height above the release point is 4, is expressed as

%lcx2 =mgh. The magnitude of the acceleration is largest when the spring is compressed to a distance x; at
this point the net upward force is kx —mg = ma, so the second condition is expressed as x = (m/k)(g + a).
EXECUTE: (a) Substituting the second expression into the first gives

1 (mY m(g+ 0:)2
—k(—j (g+a)? =mgh, or k="ET4
2 \k 2gh
o .. . . 2gh
(b) Substituting this into the expression for x gives x = .
g+a

EVALUATE: When a — 0, our results become & = % and x =2h. The initial spring force is kx =mg

and the net upward force approaches zero. But %/cx2 =mgh and sufficient potential energy is stored in the

spring to move the mass to height 4.

7.72.  IDENTIFY: At equilibrium the upward spring force equals the weight mg of the object. Apply conservation
of energy to the motion of the fish.
SET UP: The distance that the mass descends equals the distance the spring is stretched. K; = K, =0, so
U, (gravitational) = U, (spring)
EXECUTE: Following the hint, the force constant k is found from mg =kd, or k =mg/d. When the fish
falls from rest, its gravitational potential energy decreases by mgy; this becomes the potential energy of the

spring, which is %ky2 = %(mg/d)yz. Equating these, %%yz =mgy,ory=2d.

EVALUATE: At its lowest point the fish is not in equilibrium. The upward spring force at this point is
ky =2kd, and this is equal to twice the weight. At this point the net force is mg, upward, and the fish has

an upward acceleration equal to g.

7.73.  IDENTIFY: Only conservative forces (gravity and the spring) act on the fish, so its mechanical energy is
conserved.
SET UP: Energy conservation tells us K +U,; +Wyper = Ky +U,, where Wy, =0. U, =mgy,

_1 2 1.2
K =5mv", and Ug,, =5 k0"

EXECUTE: (a) K| +U| +W 4o = K, +U,. Lety be the distance the fish has descended, so y =0.0500 m.

1 1 . .
K =0, Wyper =0, Uy =mgy, K, =Emv§, and U, = Ekyz. Solving for K, gives

K, =U,-U, =mgy —%kyz = (3.00 kg)(9.8 m/s>)(0.0500 m) —%(900 N/m)(0.0500 m)?

2(0.345J)

. . 2K
K, =1.47J-1.125J=0.345 J. Solving for v, gives v, = \/—2 = =0.480 m/s.
m 3.00 kg

(b) The maximum speed is when K, is maximum, which is when dK,/dy = 0. Using K, =mgy —%ky2

2
gives % =mg —ky =0. Solving for y gives y = mg _3.00ke)O.8 m/s7)
'y

=0.03267 m. At this y,
k 900 N/m

K, =(3.00 kg)(9.8 m/s?)(0.03267 m)—%(900 N/m)(0.03267 m)®. K, =0.9604 ] —0.4803 ] = 0.4801 J,

S0 v, =, /Zﬁ =0.566 m/s.
m

EVALUATE: The speed in part (b) is greater than the speed in part (a), as it should be since it is the
maximum speed.
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7.74.  IDENTIFY: The spring obeys Hooke’s law. Gravity and the spring provide the vertical forces on the brick.
The mechanical energy of the system is conserved.
SETUP: Use K;+ Uy =K, + U;. In part (a), setting y; =0, we have y; =x, the amount the spring will

stretch. Also, since K; = K; =0, %kx2 =mgx. In part (b), y;=h+x, where h=1.0 m.

2mg  2(3.0 kg)(9.80 m/s?)
k 1500 N/m

(b) %kx2 =mg(h + x), k- 2mgx —2mgh =0 and x = %(l + /l + %J Since x must be positive, we

2
have x="8[ 14 |14+ 20K |- G0ke)O80 m/sT)) -y 2010 m)TS00 N/zm) =022m=22cm
k mg 1500 N/m 3.0 kg(9.80 m/s?)

EVALUATE: In part (b) there is additional initial energy (from gravity), so the spring is stretched more.
7.75.  (a) IDENTIFY and SETUP: Apply K, +U 4+ W4 = Kp +Up to the motion from 4 to B.

EXECUTE: K, =0, Kz=1mvj

EXECUTE: (a) x = =0.039 m=3.9 cm.

Uy;=0, Ug=U,p =%kx§, where xz=0.25m
Wother = WF = FxB
Thus Fxp = %mvé + %kxﬁ; (The work done by F' goes partly to the potential energy of the stretched spring

and partly to the kinetic energy of the block.)
Fxp =(20.0 N)(0.25m)=5.0J and %kxﬁ =1.(40.0 N/m)(0.25 m)>=1.25]

Thus 5.0 J=lmv§ +1.257] and vz = 26.750) =3.87 m/s
2 0.500 kg

(b) IDENTIFY: Apply Eq. (7.15) to the motion of the block. Let point C be where the block is closest to
the wall. When the block is at point C the spring is compressed an amount |xC|, so the block is

0.60 m —|xc| from the wall, and the distance between B and C'is xp +|xc|.

SET UP: The motion from 4 to B to C is described in Figure 7.75.

I Vi Kp+Up +Wogper =K +Uc
| —_—

Wﬂ EXECUTE: W 4., =0
E— 102 50— _
A B B Kp=5mvp=50J-125J=3.75]
! (from part (a))
|

A ! Up=1h=1251]
|

C : K =0 (instantaneously at rest at point

closest to wall)

Figure 7.75

2
Thus 3.75 J+1.25 J =2 k|x|

|x |= /M =0.50 m
¢ 40.0 N/m
The distance of the block from the wall is 0.60 m—0.50 m=0.10 m.

EVALUATE: The work (20.0 N)(0.25 m)=5.0J done by F puts 5.0 J of mechanical energy into the

system. No mechanical energy is taken away by friction, so the total energy at points B and C'is 5.0 J.
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7.76.  IDENTIFY: Apply Eq. (7.14) to the motion of the student.
SETUP: Let x5 =0.18 m, x; =0.71 m. The spring constants (assumed identical) are then known in terms

of the unknown weight w, 4kxy =w. Let y =0 at the initial position of the student.
EXECUTE: (a) The speed of the brother at a given height / above the point of maximum compression is

2
then found from %(4k)x12 = %[K]v2 +mgh, or V= %xlz —2gh= g[x—l - 2hJ. Therefore,
g w Xo

v =\/(9.80 m/s2)((0.71 m)?/(0.18 m)—2(0.90 m)) =3.13 m/s, or 3.1 m/s to two figures.

2 2
(b) Setting v=0 and solving for 4, h= 2k, = —140 m, or 1.4 m to two figures.
mg  2x,
. . . . X2 (xy+0.53m)° 053m) .
(¢) No; the distance x, will be different, and the ratio ~-=-"0"""" "7 —y | |+ —""— | will be
Xo Xo X0

different. Note that on a planet with lower g, x, will be smaller and / will be larger.

EVALUATE: We are able to solve the problem without knowing either the mass of the student or the force
constant of the spring.

7.77. IDENTIFY: We can apply Newton’s second law to the block. The only forces acting on the block are
gravity downward and the normal force from the track pointing toward the center of the circle. The
mechanical energy of the block is conserved since only gravity does work on it. The normal force does no
work since it is perpendicular to the displacement of the block. The target variable is the normal force at

the top of the track.
2
. . v .
SET UP: For circular motion XF = mE Energy conservation tells us that K, +U 4 +W .. =Kz +Ujp,

= = =12
where Woher = 0- Ug =mgy and K =>mv".

EXECUTE: Let point 4 be at the bottom of the path and point B be at the top of the path. At the bottom of
2
the path, n, —mg = m% (from Newton’s second law).

V= \/E(nA -mg) = MGAO N -0.49 N) =6.82 m/s. Use energy conservation to find the speed
m 0.0500 kg

2= imv%; +mg(2R). Solving for vy gives

atpoint B. K, +U 4+ W, = K +Up, giving Tmvy=1

vy =V2 — 4Rg =+/(6.82 m/s)* — 4(0.800 M)(9.8 m/s>) =3.89 m/s. Then at point B, Newton’s second law

2
gives np +mg = m%. Solving for ny gives
V2 (3.89 m/s)? )

ng = m%—mg =(0.0500 kg) 0——9.8 m/s” |=0.456 N.

EVALUATE: The normal force at the top is considerably less than it is at the bottom for two reasons: the
block is moving slower at the top and the downward force of gravity at the top aids the normal force in
keeping the block moving in a circle.

7.78.  IDENTIFY: Applying Newton’s second law, we can use the known normal forces to find the speeds of the
block at the top and bottom of the circle. We can then use energy conservation to find the work done by
friction, which is the target variable.

2
SET UP: For circular motion XF = m% Energy conservation tells us that K, +U 4 +W .. = Kp +Ugp,

where Wi, is the work done by friction. U, =mgy and K = %mvz.
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EXECUTE: Use the given values for the normal force to find the block’s speed at points 4 and B. At point 4,
2
Newton’s second law gives n, —mg = mY4. So

2
v = \/g(n L —mg) = \/&01(3.95 N—-0.392 N) = 6.669 m/s. Similarly at point B, n, +mg = m%.

0.0400 k
. . R .500
Solving for vy gives vy = \/—(nB +mg) = Os—m(0.680 N+0.392 N) =3.660 m/s. Now apply the
m 0.0400 kg
work-energy theorem to find the work done by friction. K ,+U 4+ W .. =Kz +Up.

Wother =Kp+Up — K.

Wother = %(0.40 kg)(3.66 m/s)? + (0.04 kg)(9.8 m/s*)(1.0 m)— %(0.04 kg)(6.669 m/s)>.

Woher = 0.2679 J+0.392 1 —0.8895 J=-0.230 .

EVALUATE: The work done by friction is negative, as it should be. This work is equal to the loss of
mechanical energy between the top and bottom of the circle.
7.79. IDENTIFY: U =mgh. Use h=150 m for all the water that passes through the dam.

SETUP: m=pV and V = AAh is the volume of water in a height Ak of water in the lake.

EXECUTE: (a) Stored energy = mgh =(pV)gh= p A1 m)gh.

stored energy = (1000 kg/m*)(3.0x10® m?)(1 m)(9.8 m/s*)(150 m)=4.4x10'? J.

(b) 90% of the stored energy is converted to electrical energy, so (0.90)(mgh)=1000 kWh.
(1000 kWh)((3600 s)/(1 h))

(0.90)pVgh =1000 kWh. V = : —=27x10° m’.
(0.90)(1000 kg/m>)(150 m)(9.8 m/s?)

v 27x10°m’

4 3.0%x10°m?
EVALUATE: A’ is much less than 150 m, so using # =150 m for all the water that passed through the
dam was a very good approximation.

7.80.  IDENTIFY and SET UP: The potential energy of a horizontal layer of thickness dy, area 4, and height y is
dU =(dm)gy. Let p be the density of water.

EXECUTE: dm=pdV =pAdy, so dU = pAgy dy.
The total potential energy U is

h h
szo dU=,0Ag.[O ydy=%pAgh2.

A=3.0x10° m* and £ =150 m, so U =3.3x10" J=9.2x10” kWh
EVALUATE: The volume is A4 and the mass of water is pV = pA4h. The average depth is A, =h/2, so

Change in level of the lake: AAhL =V ... Ah =9.0x10"*m.

U =mgh,,.
7.81. IDENTIFY: Apply Eq. (7.15) to the motion of the block.
SET UP: The motion from 4 to B is described in Figure 7.81.

y vg = 7.00 mfs
’///,//':_”

6.00 m

= 3(1,::")

Figure 7.81
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The normal force is n =mgcos@, so f, =y n= pmgcoso.

v4=0; yp=(6.00m)sin30.0°=3.00 m

K +U, +Wipee =Kp+Up

EXECUTE: Work is done by gravity, by the spring force, and by friction, so Wy, =W, and
U=Ug+Ugyy

K, =0, Kp=1mvj=1(1.50kg)(7.00 m/s)* =36.75 1

Uy=Uqy4+U,

grav, A =UYel, 4> since Ugrav,A =0

Up =Uqg p +Ugpay. 5 = 0+ mgyy = (1.50 kg)(9.80 m/s?)(3.00 m) =44.1]

grav, B
Wother =Wy = (fi cos@)s = tymg cos 6(cos180°)s = -y mg cos Os
Wother = —(0.50)(1.50 kg)(9.80 m/s%)(cos30.0°)(6.00 m) =—38.19 J
Thus U, 4 —38.191=36.75J+44.10J

Ug 4=38.19J+36.751+44.10J=119]

EVALUATE: U, must always be positive. Part of the energy initially stored in the spring was taken away

by friction work; the rest went partly into kinetic energy and partly into an increase in gravitational
potential energy.

7.82.  IDENTIFY: Only gravity does work, so apply Eq. (7.4). Use =F =md to calculate the tension.
SETUP: Let y=0 atthe bottom of the arc. Let point 1 be when the string makes a 45° angle with the

vertical and point 2 be where the string is vertical. The rock moves in an arc of a circle, so it has radial
acceleration a;,q = Vir

EXECUTE: (a) At the top of the swing, when the kinetic energy is zero, the potential energy (with respect
to the bottom of the circular arc) is mgl(1 —cos 8), where / is the length of the string and 8 is the angle the

string makes with the vertical. At the bottom of the swing, this potential energy has become kinetic energy,
so mgl(1-cos) =Lmv?, or v=\/2gl(1-cosB) = \/2(9.80 m/s%)(0.80 m)(1—cos45°) = 2.1 mys.
(b) At 45° from the vertical, the speed is zero, and there is no radial acceleration; the tension is equal to

the radial component of the weight, or mg cosé = (0.12 kg)(9.80 m/sz) cos 45°=0.83 N.

(c) At the bottom of the circle, the tension is the sum of the weight and the mass times the radial
acceleration,

mg + mv%/l =mg(1+2(1-cos45°))=19N
EVALUATE: When the string passes through the vertical, the tension is greater than the weight because the
acceleration is upward.
7.83. F=-ox?j, a=2.50N/m’
IDENTIFY: F is not constant so use Eq. (6.14) to calculate W. F must be evaluated along the path.
(a) SET UP: The path is sketched in Figure 7.83a.

v

dl = dxi +dyj
¥m F-dl =—axy? dy

b2

On the path, x=y so F-dl :—Oty3 dy
3m

Figure 7.83a
EXECUTE: W = I *Fodl = jyz (—ay*) dy = —(a/4)(y4jy2 J =—(a/4)(y3 - 1)
1 yl yl

$1=0, y,=3.00m, so #=-1(2.50 N/m’)(3.00 m)* =-50.6 1
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7.84.

7.85.

(b) SET UP: The path is sketched in Figure 7.83b.

Figure 7.83b

For the displacement from point 1 to point 2, dl = dxi, so F-dl =0 and W =0. (The force is
perpendicular to the displacement at each point along the path, so W =0.)

For the displacement from point 2 to point 3, dl = dy}, so F-dl = —01xy2 dy. On this path, x=3.00 m, so
F -dl =—(2.50 N/m*)(3.00 m)y? dy = —(7.50 N/m?)y? dy.

3. -
EXECUTE: W = jz F-dl ==(7.50 N/m?)[ "3 )2 dy=—(7.50 Nim?)1 (3 - 13)
V2

W =~(7.50 N/m*)(4)(3.00 m)* =—67.5 1

(c) EVALUATE: For these two paths between the same starting and ending points the work is different, so
the force is nonconservative.
IDENTIFY: Calculate the work W done by this force. If the force is conservative, the work is path independent.

P~ -
SET UP: szsz-dl.
1

P P
EXECUTE: (a) W = IPZ Fidy= CIPQ yzdy. W doesn't depend on x, so it is the same for all paths between
1 1
P, and P,. The force is conservative.
P P
(b) W= J.Pz Fdx=C IPZ yzdx. W will be different for paths between points P, and P, for which y has
1 1

different values. For example, if y has the constant value y 0 along the path, then W =Cy 02— X))

W depends on the value of y 0 The force is not conservative.

3
EVALUATE: F = Cyzj has the potential energy function U(y) = —%. We cannot find a potential

energy function for F = Cy2f .

P, o~ -
IDENTIFY: Use WV = IPZ F -dl to calculate W for each segment of the path.
1

SETUP: F-dl = Fdx = axy dx

EXECUTE: (a) The path is sketched in Figure 7.85.

(b) (1): x=0 along this leg, so F =0 and W =0. (2): Along this leg, y =1.50 m, so

F -dl =(3.00 N/m)xdx, and W =(1.50 N/m)((1.50 m)> —0)=3.38J (3) F-dl =0, so W =0 (4) y=0,
so F=0 and W =0. The work done in moving around the closed path is 3.38 J.

(c¢) The work done in moving around a closed path is not zero, and the force is not conservative.
EVALUATE: There is no potential energy function for this force.
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(5]

Figure 7.85

7.86.  IDENTIFY: Use Eq. (7.16) to relate F, and U(x). The equilibrium is stable where U(x) is a local
minimum and the equilibrium is unstable where U(x) is a local maximum.
SETUP: dU/dx is the slope of the graph of U versus x. K =E —U, so K is a maximum when U is a
minimum. The maximum x is where E =U.
EXECUTE: (a) The slope of the U vs. x curve is negative at point 4, so F, is positive (Eq. (7.16)).
(b) The slope of the curve at point B is positive, so the force is negative.
(c¢) The kinetic energy is a maximum when the potential energy is a minimum, and that figures to be at
around 0.75 m.
(d) The curve at point C looks pretty close to flat, so the force is zero.
(e) The object had zero kinetic energy at point 4, and in order to reach a point with more potential energy
than U(A), the kinetic energy would need to be negative. Kinetic energy is never negative, so the object
can never be at any point where the potential energy is larger than U(A4). On the graph, that looks to be at
about 2.2 m.
(f) The point of minimum potential (found in part (c)) is a stable point, as is the relative minimum near 1.9 m.
(g) The only potential maximum, and hence the only point of unstable equilibrium, is at point C.
EVALUATE: IfE is less than U at point C, the particle is trapped in one or the other of the potential
"wells" and cannot move from one allowed region of x to the other.

7.87. IDENTIFY: K =FE—-U determines v(x).
SET UP: v is a maximum when U is a minimum and v is a minimum when U is a maximum.
F,=-dU/dx. The extreme values of x are where £ =U(x).

EXECUTE: (a) Eliminating £ in favor of o and x,(f5 = a/xy),
o p_axi o alx : X
U ==-—=5"5-——=77 ] |+ /I
x° X xyxt xpx xp|\x x

U(xo) = % (1-1)=0. U(x) is positive for x < X, and negative for x > x, (o and [ must be taken
x
0
as positive). The graph of U(x) is sketched in Figure 7.87a.

X X

2
2 2 Xy X0 . .. — .
(b) v(x)=,/-—U = |l— ||| — |~| — | |- The proton moves in the positive x-direction, speeding up
m mx
0

until it reaches a maximum speed (see part (c)), and then slows down, although it never stops. The minus
sign in the square root in the expression for v(x) indicates that the particle will be found only in the region

where U <0, thatis, x> x,. The graph of v(x) is sketched in Figure 7.87b.

(c¢) The maximum speed corresponds to the maximum kinetic energy, and hence the minimum potential

3 2
X X
energy. This minimum occurs when auv_ 0, or 4v =23 —2(—‘)} + [—0) =0,

dx dx X, X X
. . o o
which has the solution x = 2x,. UQx))=-—7F, sov= 5
4x0 me0
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(d) The maximum speed occurs at a point where i{—U =0, and from Eq. (7.15), the force at this point
X
is zero.
(€) x =3x,, and U(3x0)=—2—0;.
X
0
[2 220 af(x) 2a )
- X, X X
v(x) =, [ U )-Ux) = [=|| == [-=|| 2| -2 ||= —[—0)—(—()) -
(x) m((l) (x)) - 9x3 xé(xJ . mxé T . 9

The particle is confined to the region where U(x) < U(x;). The maximum speed still occurs at x = 2x4s

but now the particle will oscillate between x. and some minimum value (see part (f)).

1
() Note that U(x)—-U(x;) can be written as

= BREI BB

0 0

which is zero (and hence the kinetic energy is zero) at x=3x; =x, and x= %x o- Thus, when the particle

is released from Xy it goes on to infinity, and doesn’t reach any maximum distance. When released from
X it oscillates between %x 0 and 3x0.

EVALUATE: In each case the proton is released from rest and £ =U (x;), where X; is the point where it
is released. When X, =X, the total energy is zero. When X, =X the total energy is negative. U(x) —> 0

as x — oo, so for this case the proton can't reach x — co and the maximum x it can have is limited.

U v

10 o

L]
b

6 8

(b)

Figure 7.87
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